Matching Items (18)
Filtering by

Clear all filters

136089-Thumbnail Image.png
Description
As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix

As Arizona enters its fifteenth year of drought and Lake Mead hits historic lows, water management and policy planning will become increasingly important to ensure future water security in the Southwestern region of the United States. This thesis compares water demand trends and policies at the municipal level in Phoenix and Tucson, Arizona over the time period from 1980-2010. By analyzing gallons per capita per day (GPCD) trends for each city in the context of population growth, drought, and major state and local policies over the twenty year period, reasons for declines in per capita water demand were explored. Despite differences in their available water sources and political cultures, both the City of Phoenix and the City of Tucson have successfully reduced their per capita water consumption levels between 1980 and 2010. However, this study suggests that each city's measured success at reducing GPCD has been more a result of external events (supply augmentation, drought, and differing development trends) rather than conservation and demand reduction regulations adopted under the auspices of the Groundwater Management Act.
ContributorsSnyder, Rachel Claire (Author) / Larson, Kelli (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2015-05
136120-Thumbnail Image.png
Description
I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed

I set out to better understand the issues, perceptions & solutions surrounding drought. The question that compelled my project was "What might be all the ways that we can improve the experience of conserving, reusing & educating on the topic of water." Through the process of design research I developed a system of products that improves the user experiences surrounding water. The result is IOW, an intelligent 3-product system that aims to make your water needs & wants smarter & less wasteful.
ContributorsShappee, Christian Kyle (Author) / Shin, Dosun (Thesis director) / McDermott, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Herberger Institute for Design and the Arts (Contributor) / School of Sustainability (Contributor) / The Design School (Contributor)
Created2015-05
137095-Thumbnail Image.png
Description
There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233

There are three known materials that readily undergo fission, allowing their use as a base for nuclear fuel: uranium-235, a naturally-occurring but uncommon isotope; plutonium, created from irradiated natural uranium; and uranium-233, produced from thorium. Of the three, uranium-235 and plutonium feature heavily in the modern nuclear industry, while uranium-233 and the thorium fuel cycle have failed to have significant presence in the field. Historically, nuclear energy development in the United States, and thorium development in particular, has been tied to the predominant societal outlook on the field, and thorium was only pursued seriously as an option during a period when nuclear energy was heavily favored, and resources seemed scarce. Recently, thorium-based energy has been experiencing a revival in interest in response to pollution concerns regarding fossil fuels. While public opinion is still wary of uranium, thorium-based designs could reduce reliance on fossil fuels while avoiding traditional drawbacks of nuclear energy. The thorium fuel cycle is more protected against proliferation, but is also much more expensive than the uranium-plutonium cycle in a typical reactor setup. Liquid-fueled molten salt reactor designs, however, bypass the prohibitive expense of U-233 refabrication by avoiding the stage entirely, keeping the chain reaction running with nothing but thorium input required. MSRs can use any fissile material as fuel, and are relatively safe to operate, due to passive features inherent to the design.
ContributorsGalbiati, Joseph Nicco (Author) / Martin, Thomas (Thesis director) / Foy, Joseph (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
148376-Thumbnail Image.png
Description

In 2021, Palestine will have been under official Israeli occupation for 54 years. As conflict persists between the two populations, it is becoming increasingly difficult to imagine a peaceful resolution. As international legal bodies have failed to bring an end to the occupation, the Israeli government continues to carry out

In 2021, Palestine will have been under official Israeli occupation for 54 years. As conflict persists between the two populations, it is becoming increasingly difficult to imagine a peaceful resolution. As international legal bodies have failed to bring an end to the occupation, the Israeli government continues to carry out extensive violations of human rights against the Palestinians. One significant consequence of the occupation has been the Palestinians’ lack of access to safe and reliable water, a problem that is continuing to worsen as a result of climate change and years of over-utilization of shared, regional water resources. Since the occupation started, international organizations have not only affirmed the general human right to water but have overseen several peace agreements between Israel and Palestine that have included stipulations on water. Despite these measures, neither water access nor quality has improved and, over time, has worsened. This paper will look at why international law has failed to improve conditions for Palestinians and will outline the implications of the water crisis on a potential solution between Israel and Palestine.

ContributorsTimpany, Grace Louise (Author) / Haglund, LaDawn (Thesis director) / Rothenberg, Daniel (Committee member) / School of Politics and Global Studies (Contributor, Contributor, Contributor) / School of Sustainability (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131251-Thumbnail Image.png
Description
Solutions to mitigating the negative externalities of climate change are deemed necessary for a sustainable future. Residential community composting, such as the Community Compost Program at Vista del Sol, could potentially play an important role within Arizona State University’s (ASU) solution to develop a sustainable institution as programs aspire to

Solutions to mitigating the negative externalities of climate change are deemed necessary for a sustainable future. Residential community composting, such as the Community Compost Program at Vista del Sol, could potentially play an important role within Arizona State University’s (ASU) solution to develop a sustainable institution as programs aspire to develop sustainable behaviors and integrate environmentally positive practices within students’ lives. The research and review of how universities can utilize a residential community compost program to ignite sustainable action within on-campus communities could present helpful information for additional universities to implement on their own. This review will aim to tackle the research question: how can the operational functions of existing university residential composting programs and behavioral science research be implemented within the Community Compost Program at Arizona State University? The review from existing university residential composting programs and behavioral sciences will be completed to provide an explanation of how residential community composting can overall be effectively prompted.
ContributorsKovacs, Amelia (Author) / Wharton, Christopher (Thesis director) / Daniel, Fischer (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
Description
Local food sustainability has gained significant recent attention over the past decade. Considerable research points to a host of economic, social, and environmental benefits resulting from engagement with local food systems. These benefits are more apparent when contrasted with a model in which individuals participate in larger, non-local food systems

Local food sustainability has gained significant recent attention over the past decade. Considerable research points to a host of economic, social, and environmental benefits resulting from engagement with local food systems. These benefits are more apparent when contrasted with a model in which individuals participate in larger, non-local food systems for all or most of their food sourcing. As such, this project was designed to explore possible barriers, such as lack of awareness, to engagement in local foods among Arizona State University (ASU) students on the main Tempe campus. Furthermore, this creative project aimed to evaluate how a local foods program conducted in a university dining hall might impact students’ awareness and interest in local foods served on site.
ContributorsBakeman, Taylor Melissa (Author) / Wharton, Christopher (Thesis director) / Popova, Laura (Committee member) / College of Health Solutions (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132247-Thumbnail Image.png
Description
The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the

The purpose of this thesis is to imagine and predict the ways in which humans will utilize technology to feed the world population in the 21st century, in spite of significant challenges we have not faced before. This project will first thoroughly identify and explain the most pressing challenges the future will bring in climate change and population growth; both projected to worsen as time goes on. To guide the prediction of how technology will impact the 21st century, a theoretical framework will be established, based upon the green revolution of the 20th century. The theoretical framework will summarize this important historical event, and analyze current thought concerning the socio-economic impacts of the agricultural technologies introduced during this time. Special attention will be paid to the unequal disbursement of benefits of this green revolution, and particularly how it affected small rural farmers. Analysis of the technologies introduced during the green revolution will be used to predict how 21st century technologies will further shape the agricultural sector. Then, the world’s current food crisis will be compared to the crisis that preceded the green revolution. A “second green revolution” is predicted, and the agricultural/economic impact of these advances is theorized based upon analysis of farming advances in the 20th century.
ContributorsWilson, Joshua J (Author) / Strumsky, Deborah (Thesis director) / Benjamin, Victor (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132642-Thumbnail Image.png
Description
Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations,

Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations, have common landscapes they are responsible for up-keeping and irrigating. 208 neighborhood communities exist within the City of Tempe. Each year the city provides $30,000 in grant funding to these 208 neighborhoods to implement water conservation projects. This thesis focuses on ten neighborhoods who had applied and were granted funding to implement a conservation project between the years 2011 and 2016. My findings showed that this program has not been effective in reducing water consumption, wither due to the lack of implementation or the small-scale of the projects. From my research and synthesis, I suggest a layer of accountability be added to the program to ensure projects are effective and participants are implementing their projects and that the program is effective overall. This study provides the City of Tempe with relevant and viable information to aid management of water consumption and conservation within neighborhoods.
ContributorsApillanes, Sierra Caitlyn (Author) / Larson, Kelli (Thesis director) / Bomar, Melissa (Committee member) / School of Sustainability (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
134537-Thumbnail Image.png
Description
Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However,

Located in the Sunbelt of the Southwestern United States, Phoenix Arizona finds itself in one of the hottest, driest places in the world. Thankfully, Phoenix has the Salt River, Gila River, Verde River, and a vast aquifer to meet the water demands of the municipal, industrial, and agricultural sectors. However, rampant groundwater pumping and over-allocation of these water supplies based on unprecedented, high flows of the Colorado River have created challenges for water managers to ensure adequate water supply for the future. Combined with the current 17-year drought and the warming and drying projections of climate change, the future of water availability in Phoenix will depend on the strength of water management laws, educating the public, developing a strong sense of community, and using development to manage population and support sustainability. As the prevalence of agriculture declines in and around Phoenix, a substantial amount of water is saved. Instead of storing this saved water, Phoenix is using it to support further development. Despite uncertainty regarding the abundant and continuous availability of Phoenix's water resources, development has hardly slowed and barely shifted directions to support sustainability. Phoenix was made to grow until it legally cannot expand anymore. In order to develop solutions, we must first understand the push for development in water-stressed Phoenix, Arizona.
ContributorsVasquez, Brianna Nicole (Author) / Heimsath, Arjun (Thesis director) / Whipple, Kelin (Committee member) / School of Earth and Space Exploration (Contributor) / School of Art (Contributor) / School of Community Resources and Development (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05