Matching Items (12)
Filtering by

Clear all filters

153151-Thumbnail Image.png
Description
Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry

Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry biomass was applied as a biofertilizer at 50 g and 100 g per plant, to evaluate its effects on plant development and crop yield. Biofertilizer treatments enhanced plant growth and led to greater crop (fruit) production. Timing of biofertilizer application proved to be of importance - earlier 50 g biofertilizer application resulted in greater plant growth. Scenedesmus dimorphus culture, growth medium, and different concentrations (1%, 5%, 10%, 25%, 50%, 75%, 100%) of aqueous cell extracts were used as seed primers to determine effects on germination. Seeds treated with Scenedesmus dimorphus culture and with extract concentrations higher than 50 % (0.75 g ml-1) triggered faster germination - 2 days earlier than the control group. Extract foliar sprays of 50 ml and 100 ml, were obtained and applied to tomato plants at various extract concentrations (10%, 25%, 50%, 75% and 100%). Plant height, flower development and number of branches were significantly enhanced with 50 % (7.5 g ml-1) extracts. Higher concentration sprays led to a decrease in growth. The extracts were further screened to assess potential antimicrobial activity against the bacterium Escherichia coli ATCC 25922, the fungi Candida albicans ATCC 90028 and Aspergillus brasiliensis ATCC 16404. No antimicrobial activity was observed from the microalga extracts on the selected microorganisms.
ContributorsGarcia-Gonzalez, Jesus (Author) / Sommerfeld, Milton (Thesis advisor) / Steele, Kelly (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2014
150171-Thumbnail Image.png
Description
Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through

Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through pyrolysis technology to increase crop yields and improve soil health. However, the appropriateness of this technology in the context of Haiti remains unexplored. The three objectives of this research were to identify agricultural- and fuel-use-related needs and gaps in rural Haitian communities; determine the appropriateness of biochar pyrolyzer technology, used to convert agricultural biomass into a carbon-rich charcoal; and develop an action-oriented plan for use by development organizations, communities, and governmental institutions to increase the likelihood of adoption. Data were collected using participatory rural appraisal techniques involving 30 individual interviews and three focus-group discussions in the villages of Cinquantin and La Boule in the La Coupe region of central Haiti. Topics discussed include agricultural practices and assets, fuel use and needs, technology use and adoption, and social management practices. The Sustainable Livelihoods framework was used to examine the assets of households and the livelihood strategies being employed. Individual and focus group interviews were analyzed to identify specific needs and gaps. E.M. Rogers' Diffusion of Innovations theory was used to develop potential strategies for the introduction of pyrolysis technology. Preliminary results indicate biochar pyrolysis has potential to address agricultural and fuel needs in rural Haiti. Probable early adopters of biochar technology include households that have adopted new agricultural techniques in the past, and those with livestock. Education about biochar, and a variety of pyrolysis technology options from which villagers may select, are important factors in successful adoption of biochar use. A grain mill as an example in one of the study villages provides a model of ownership and use of pyrolysis technology that may increase its likelihood of successful adoption. Additionally, women represent a group that may be well suited to control a new local biochar enterprise, potentially benefiting the community.
ContributorsDelaney, Michael Ryan (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
137075-Thumbnail Image.png
Description
This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment. This study looks at oranges grown in Arizona and California

This thesis was conducted in order to determine the role played by food miles metrics in making the agricultural industry more sustainable. In an effort to analyze the importance of eat locally this study utilizes a partial life cycle assessment. This study looks at oranges grown in Arizona and California and inputs such as water, energy, fertilizer, herbicide, pesticide, frost mitigation, and distance in order to conduct the partial life cycle assessment. Results of this study indicate that food miles are not as significant, in relation to overall energy input, as the locavore movement claims. This is because production processes account for a larger portion of the total energy used in the food chain than what these claims suggest. While eating locally is still a significant way of reducing energy use, this thesis shows that decisions about eating sustainably should not only focus on the distance that the products travel, but place equal, if not more, importance on energy use differences due to geographic location and in-farm operations. Future research should be completed with more comprehensive impact categories and conducted for different crops, farming, and locations. Further research is needed in order to confirm or challenge the results of this thesis. With more research conducted regarding this topic, ecological labeling of agricultural products could be improved to help consumers make the most informed choices possible.
ContributorsMaggass, Melissa Gail (Author) / Manuel-Navarrete, David (Thesis director) / Martin, Thomas (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / W. P. Carey School of Business (Contributor) / Department of Management (Contributor)
Created2014-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
134475-Thumbnail Image.png
Description
This research focused on how low-income communities in Ghana could convert Waste Vegetable Oil (WVO) into biodiesel to supplement their energy demands. The 2016 World Energy Outlook estimates that about 8 million Ghanaians do not have access to electricity while 82% of the population use biomass as cooking fuel. However,

This research focused on how low-income communities in Ghana could convert Waste Vegetable Oil (WVO) into biodiesel to supplement their energy demands. The 2016 World Energy Outlook estimates that about 8 million Ghanaians do not have access to electricity while 82% of the population use biomass as cooking fuel. However, WVO is available in almost every home and is also largely produced by hotels and schools. There are over 2,700 registered hotels and more than 28,000 educational institutions from Basic to the Tertiary level. Currently, most WVOs are often discarded in open gutters or left to go rancid and later disposed of. Therefore, WVOs serve as cheap materials available in large quantities with a high potential for conversion into biodiesel and commercializing to support the economic needs of low-income communities. In 2013, a group of researchers at Kwame Nkrumah University of Science and Technology (KNUST) in Ghana estimated that the country could be producing between 82,361 and 85,904 tons of biodiesel from WVOs generated by hotels alone in 2015. Further analysis was also carried out to examine the Ghana National Biofuel Policy that was introduced in 2005 with support from the Ghana Energy Commission. Based on the information identified in the research, a set of recommendations were made to help the central government in promoting the biodiesel industry in Ghana, with a focus on low-income or farming communities. Lastly, a self-sustaining biodiesel production model with high potential for commercialization, was proposed to enable low-income communities to produce their own biodiesel from WVOs to meet their energy demands.
ContributorsAnnor-Wiafe, Stephen (Author) / Henderson, Mark (Thesis director) / Rogers, Bradley (Committee member) / Engineering Programs (Contributor) / Department of Management and Entrepreneurship (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134459-Thumbnail Image.png
Description
Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These

Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These programs are unique in providing hands-on training, housing, meals, and a stipend in return for labor, presenting a pathway to social empowerment. The potential outcomes of increasing diversity and inclusion in farm programs are absent from the research on the benefits of diversity and inclusion in other work environments, such as the corporate setting. This paper presents the results of a study aimed at determining levels of diversity and inclusion in United States farm-based internship programs, and the viability of these programs as an effective opportunity to engage marginalized young people in farming. The study of 13 farm owners and managers across the U.S. found that the participants are focused on fostering education and training, environmental benefits, and a sense of community in their respective programs. All participants either want to establish, or believe they currently have, an inclusive workplace on their farm, but also indicated a barrier to inclusivity in the lack of a diverse applicant pool. Future recommendations for removing that barrier and involving more young, diverse interns include increased outreach and access to these programs, the use of inclusive language, and further research.
ContributorsLascola, Dania (Co-author) / Biel, Braden (Co-author) / Cloutier, Scott (Thesis director) / MacFadyen, Joshua (Committee member) / School of International Letters and Cultures (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
134888-Thumbnail Image.png
Description
The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use

The Prosopis genus of trees, also known as mesquites, are uniquely equipped to allow for an agroforestry regime in which crops can be grown beneath the canopy of the tree. Mesquites have the ability to redistribute water moisture in such a way that allows plants under the canopy to use water that has been brought up by the roots of mesquite trees. This means that there is a potential for food crops to be grown under the trees without using additional irrigation measures. This could be used where access to water is limited or for a sustainability-minded farmer who is trying to reduce water inputs in an arid environment. Mesquite trees produce a variety of products, including lumber and bean pods that can be ground down into an edible flour. Both products demand a high price in the marketplace and are produced in addition to the crops that can potentially be grown beneath the mesquite tree. In order to determine whether or not it is possible to grow crops under mesquite trees, I reviewed a wide range of literature regarding hydraulic redistribution, mesquite trees in general, and what plants might be best suited for growing beneath a mesquite. The list of plants was narrowed down to four crops that seemed most likely to survive in shaded, low water conditions in a hot environment. There has not been any research done on crops growing beneath mesquite trees, so the next step for research would be to experiment with each of the crops to determine how well each species can adapt to the specified conditions.
ContributorsMesser, Luke Winston (Author) / Eakin, Hallie (Thesis director) / Hall, Sharon (Committee member) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
148085-Thumbnail Image.png
Description

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices.

Is there a mismatch between urban farmers’ perceptions of their farm’s environmental sustainability and its actual environmental impact? Focusing on the use of water and nutrients on each farm as described by the farmers through interviews, it is evident that there is some level of disconnect between ideals and practices. This project may aid in bridging the gap between the two in regard to the farmers’ sustainability goals. This project will move forward by continuing interviews with farmers as well as collecting soil and water from the farms in order to more accurately quantify the sustainability of the farms’ practices. This project demonstrates that there is some degree of misalignment between perception and reality. Two farms claimed they were sustainable when their practices did not reflect that, while 2 farms said they were not sure if they were sustainable when their practices indicated otherwise. Samples from two farms showed high concentrations of nutrients and salts, supporting the idea that there may be a mismatch between perceived and actual sustainability.

ContributorsBonham, Emma Eileen (Author) / Muenich, Rebecca (Thesis director) / Zanin, Alaina (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / School of Sustainability (Contributor) / School of Sustainable Engineering & Built Envirnmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

As technology has evolved over time and the U.S. population increases each year, this thesis focuses on the ways in which food production has shifted from the original farm to table to industrialized, processed food systems. Through a rationalization perspective, this research looks to the history and repercussions of industrial

As technology has evolved over time and the U.S. population increases each year, this thesis focuses on the ways in which food production has shifted from the original farm to table to industrialized, processed food systems. Through a rationalization perspective, this research looks to the history and repercussions of industrial agriculture as it has shifted over time. The term over-industrialization is used to operationalize the state of our current production methods. These methods focus extensively on the least expensive and most rapid methods to produce large yields of food products and pay no mind to ethics, respect of culture, land, or quality of products. Today, there is a shroud the corporations have placed over food production to ensure a “what we can’t see doesn’t affect us” belief system. In this way, the thesis provides insight on past, current, and future methods of manufacturing. I conclude that although plausible alternatives are present, continued research and substantial producer and consumer changes must be our main priority.

ContributorsBrodkin, Emma (Author) / Keahey, Jennifer (Thesis director) / Perkins, Tracy (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Social and Behavioral Sciences (Contributor)
Created2023-05
Description

Animal agriculture is a growing industry worldwide as the global demand for animal products increases. This has resulted in many harmful unintended consequences for human health, the environment, and animal welfare. This paper aims to uncover the hidden costs of negative externalities by answering the question: What types of subsidies

Animal agriculture is a growing industry worldwide as the global demand for animal products increases. This has resulted in many harmful unintended consequences for human health, the environment, and animal welfare. This paper aims to uncover the hidden costs of negative externalities by answering the question: What types of subsidies is the US government distributing to the animal agriculture industry and in what amount? This paper will begin with some background on a few of the externalities created by the animal agriculture industry focusing specifically on environmental issues of water, air, and deforestation. Once this background is established, this will show that animal agriculture is in fact a negative-externality-generating industry. Next, subsidies will be defined and the principal findings of the research will reveal the different forms of support that the US government provides to animal agriculture. Lastly, these subsidies, both direct and indirect, will be quantified.

ContributorsEpel, Erin (Author) / Barca, Lisa (Thesis director) / Rao, Sailesh (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of International Letters and Cultures (Contributor)
Created2023-05