Matching Items (4)
Filtering by

Clear all filters

134459-Thumbnail Image.png
Description
Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These

Current farming demographics in the United States indicate an aging and overwhelmingly white group of farmers, stimulating the need for engaging a younger and more diverse population. There is an opportunity to engage these populations through farm-based internship and apprenticeship programs, which are immersive programs on small-scale, sustainable farms. These programs are unique in providing hands-on training, housing, meals, and a stipend in return for labor, presenting a pathway to social empowerment. The potential outcomes of increasing diversity and inclusion in farm programs are absent from the research on the benefits of diversity and inclusion in other work environments, such as the corporate setting. This paper presents the results of a study aimed at determining levels of diversity and inclusion in United States farm-based internship programs, and the viability of these programs as an effective opportunity to engage marginalized young people in farming. The study of 13 farm owners and managers across the U.S. found that the participants are focused on fostering education and training, environmental benefits, and a sense of community in their respective programs. All participants either want to establish, or believe they currently have, an inclusive workplace on their farm, but also indicated a barrier to inclusivity in the lack of a diverse applicant pool. Future recommendations for removing that barrier and involving more young, diverse interns include increased outreach and access to these programs, the use of inclusive language, and further research.
ContributorsLascola, Dania (Co-author) / Biel, Braden (Co-author) / Cloutier, Scott (Thesis director) / MacFadyen, Joshua (Committee member) / School of International Letters and Cultures (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
170654-Thumbnail Image.jpg
Description

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated

Urea is an added value chemical with wide applications in the industry and agriculture. The release of urea waste to the environment affects ecosystem health despite its low toxicity. Online monitoring of urea for industrial applications and environmental health is an unaddressed challenge. Electroanalytical techniques can be a smart integrated solution for online monitoring if sensors can overcome the major barrier associated with long-term stability. Mixed metal oxides have shown excellent stability in environmental conditions with long lasting operational lives. However, these materials have been barely explored for sensing applications. This work presents a proof of concept that demonstrates the applicability of an indirect electroanalytical quantification method of urea. The use of Ti/RuO2-TiO2-SnO2 dimensional stable anode (DSA®) can provide accurate and sensitive quantification of urea in aqueous samples exploiting the excellent catalytic properties of DSA® on the electrogeneration of active chlorine species. The cathodic reduction of accumulated HClO/ClO− from anodic electrogeneration presented a direct relationship with urea concentration. This novel method can allow urea quantification with a competitive LOD of 1.83 × 10−6 mol L−1 within a linear range of 6.66 × 10−6 to 3.33 × 10−4 mol L−1 of urea concentration.

Created2021-05-15
160988-Thumbnail Image.png
Description

In the Southwestern United States, climate change poses challenges to reliable water access due to droughts, wildfires, and urban development. Arizonan farmers are faced with unpredictable precipitation, muddled legal water rights, and outdated equipment to irrigate their land. Located in Northern Arizona, Verde Valley residents and stakeholders are challenging the

In the Southwestern United States, climate change poses challenges to reliable water access due to droughts, wildfires, and urban development. Arizonan farmers are faced with unpredictable precipitation, muddled legal water rights, and outdated equipment to irrigate their land. Located in Northern Arizona, Verde Valley residents and stakeholders are challenging the way the Verde River water is managed through collaboration, partnerships, and technical changes to water infrastructure. Through interviews conducted with various stakeholders involved in the Verde River ditch irrigation system, ranging from water users to nonprofit organizations, this paper identifies sociotechnical tinkering as an important aspect of maintaining agricultural operations along the river amid political tensions, social relations, and climate change. Through interviews and analysis, this paper further contributes to the relatively new discourse on the concept of sociotechnical tinkering by proving its existence and its subsequent effectiveness in the Verde Valley. Using statements made by respondents, the paper argues that sociotechnical tinkering helps manage resources through political and social relations.

ContributorsNichols, Claire (Author) / Wutich, Amber (Thesis director) / Quimby, Barbara (Committee member) / Barrett, The Honors College (Contributor) / Environmental and Resource Management (Contributor) / School of Sustainability (Contributor) / School of Geographical Sciences and Urban Planning (Contributor)
Created2021-12
131898-Thumbnail Image.png
Description
Urban agriculture includes both farming and gardening, typically in a community format, in urban areas. Agrihoods are neighborhoods centered around food production and they are becoming more popular residential areas as the local food movement grows. Agritopia is one of these agrihoods; located in Gilbert, Arizona, it contains both an

Urban agriculture includes both farming and gardening, typically in a community format, in urban areas. Agrihoods are neighborhoods centered around food production and they are becoming more popular residential areas as the local food movement grows. Agritopia is one of these agrihoods; located in Gilbert, Arizona, it contains both an urban farm and a community garden. Agritopia is oft cited for being an exemplary agrihood. This thesis uses Agritopia as a case study for exploring the challenges associated with urban agriculture in the Sonoran Desert.
Most urban agriculture sites experience challenges related to sustainability, but in the Sonoran Desert, even more challenges arise as a result of a unique climate, soil conditions, intense storms, and water scarcity. The objective of this project was to obtain information on common barriers to urban agriculture in the Sonoran Desert, as well as ways to overcome these barriers that will be made public for the purpose of improving sustainability of similar agriculture projects. I used interviews with gardeners and farm staff as my primary research method to gain insight to these barriers and solutions, and I coded their responses relating to challenges according to frequency mentioned. Using my findings, I compiled a thorough list of recommendations that urban agriculture projects in the Sonoran Desert or in similar climatic areas can use to achieve greater success and sustainable outcomes.
ContributorsAnglin, Paige Elizabeth (Author) / Eakin, Hallie (Thesis director) / Norton, Susan (Committee member) / School of Sustainability (Contributor, Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05