Matching Items (8)
Filtering by

Clear all filters

149975-Thumbnail Image.png
Description
Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems

Phosphorus (P), an essential element for life, is becoming increasingly scarce, and its global management presents a serious challenge. As urban environments dominate the landscape, we need to elucidate how P cycles in urban ecosystems to better understand how cities contribute to — and provide opportunities to solve — problems of P management. The goal of my research was to increase our understanding of urban P cycling in the context of urban resource management through analysis of existing ecological and socio-economic data supplemented with expert interviews in order to facilitate a transition to sustainable P management. Study objectives were to: I) Quantify and map P stocks and flows in the Phoenix metropolitan area and analyze the drivers of spatial distribution and dynamics of P flows; II) examine changes in P-flow dynamics at the urban agricultural interface (UAI), and the drivers of those changes, between 1978 and 2008; III) compare the UAI's average annual P budget to the global agricultural P budget; and IV) explore opportunities for more sustainable P management in Phoenix. Results showed that Phoenix is a sink for P, and that agriculture played a primary role in the dynamics of P cycling. Internal P dynamics at the UAI shifted over the 30-year study period, with alfalfa replacing cotton as the main locus of agricultural P cycling. Results also suggest that the extent of P recycling in Phoenix is proportionally larger than comparable estimates available at the global scale due to the biophysical characteristics of the region and the proximity of various land uses. Uncertainty remains about the effectiveness of current recycling strategies and about best management strategies for the future because we do not have sufficient data to use as basis for evaluation and decision-making. By working in collaboration with practitioners, researchers can overcome some of these data limitations to develop a deeper understanding of the complexities of P dynamics and the range of options available to sustainably manage P. There is also a need to better connect P management with that of other resources, notably water and other nutrients, in order to sustainably manage cities.
ContributorsMetson, Genevieve (Author) / Childers, Daniel (Thesis advisor) / Aggarwal, Rimjhim (Thesis advisor) / Redman, Charles (Committee member) / Arizona State University (Publisher)
Created2011
150171-Thumbnail Image.png
Description
Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through

Haiti has witnessed high deforestation rates in recent decades, caused largely by the fuel needs of a growing population. The resulting soil loss is estimated to have contributed towards a decline in agricultural productivity of 0.5% -1.2% per year since 1997. Recent studies show the potential of biochar use through pyrolysis technology to increase crop yields and improve soil health. However, the appropriateness of this technology in the context of Haiti remains unexplored. The three objectives of this research were to identify agricultural- and fuel-use-related needs and gaps in rural Haitian communities; determine the appropriateness of biochar pyrolyzer technology, used to convert agricultural biomass into a carbon-rich charcoal; and develop an action-oriented plan for use by development organizations, communities, and governmental institutions to increase the likelihood of adoption. Data were collected using participatory rural appraisal techniques involving 30 individual interviews and three focus-group discussions in the villages of Cinquantin and La Boule in the La Coupe region of central Haiti. Topics discussed include agricultural practices and assets, fuel use and needs, technology use and adoption, and social management practices. The Sustainable Livelihoods framework was used to examine the assets of households and the livelihood strategies being employed. Individual and focus group interviews were analyzed to identify specific needs and gaps. E.M. Rogers' Diffusion of Innovations theory was used to develop potential strategies for the introduction of pyrolysis technology. Preliminary results indicate biochar pyrolysis has potential to address agricultural and fuel needs in rural Haiti. Probable early adopters of biochar technology include households that have adopted new agricultural techniques in the past, and those with livestock. Education about biochar, and a variety of pyrolysis technology options from which villagers may select, are important factors in successful adoption of biochar use. A grain mill as an example in one of the study villages provides a model of ownership and use of pyrolysis technology that may increase its likelihood of successful adoption. Additionally, women represent a group that may be well suited to control a new local biochar enterprise, potentially benefiting the community.
ContributorsDelaney, Michael Ryan (Author) / Aggarwal, Rimjhim (Thesis advisor) / Chhetri, Nalini (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2011
137373-Thumbnail Image.png
Description
A new class of entrepreneurs is emerging in China, who are using a business model approach to solve societal problems. A small but growing niche of these so called "social entrepreneurs" is attempting to address long standing problems in the agricultural sector stemming from the three agricultural issues of farmers,

A new class of entrepreneurs is emerging in China, who are using a business model approach to solve societal problems. A small but growing niche of these so called "social entrepreneurs" is attempting to address long standing problems in the agricultural sector stemming from the three agricultural issues of farmers, agriculture and rural areas. In order to understand what social entrepreneurship means in the Chinese context, the motivations behind it, and the opportunities and problems related specifically to agricultural sector, interviews were conducted with social entrepreneurs, research institutes, and social fostering organizations in multiple tier-one cities in mainland China. Results show that the concept of social enterprise is comprehended in a very different way in the Chinese context relative to the general usage of the term in the literature. Social enterprises in the agricultural sector are divided into categories of Community Supported Agriculture-based organic farms, farmers' markets, food educators and city farmers. This is a growing group of entrepreneurs who could be better supported on the basis of resources and protection by the government, law and policy, universities, and a united producer and consumer front.
ContributorsGray, Christopher Stephan (Author) / Aggarwal, Rimjhim (Thesis director) / Ostrom, Amy (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Department of Marketing (Contributor)
Created2013-12
141381-Thumbnail Image.png
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric).

After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2013-12-01
Description

This thesis conducted an evaluation of the performance and return on investment of a 2 x 6m, simple design greenhouse, as a climate control technology. Specifically, differences in internal microclimate conditions between a greenhouse treatment plot, and sun and shaded control plots were assessed and related to observed differences in

This thesis conducted an evaluation of the performance and return on investment of a 2 x 6m, simple design greenhouse, as a climate control technology. Specifically, differences in internal microclimate conditions between a greenhouse treatment plot, and sun and shaded control plots were assessed and related to observed differences in crop yields across these plots. Growing conditions and productivity of two crops, tomato and swiss chard, which were grown over summer and winter growing seasons, respectively, were compared. It was found that the greenhouse was associated with improved growth conditions (as measured by the R-Index) for both crops but resulted in higher productivity only for tomatoes. Return on investment and food security impacts from the scaling of greenhouse agriculture were also explored.

ContributorsKline, Jarod Neale (Author) / Aggarwal, Rimjhim (Thesis director) / Agusdinata, Datu Buyung (Committee member) / Vanos, Jennifer K. (Committee member) / School of Sustainability (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131265-Thumbnail Image.png
Description
The past decades have seen major changes with globalization, increased trade, digital technologies, and the increased threat of climate change consequences. These changes in trends have changed how the world communicates, travels, produces, manufactures, and develops. Yet despite having the most advanced technologies and the most connected world to date,

The past decades have seen major changes with globalization, increased trade, digital technologies, and the increased threat of climate change consequences. These changes in trends have changed how the world communicates, travels, produces, manufactures, and develops. Yet despite having the most advanced technologies and the most connected world to date, other aspects of development and quality of life have not kept up the pace in adapting and changing based on these trends. Specifically in developing countries, while the outside environment may be changing, the systems, structures, and societal values in place have not fully adapted. These aspects of society are naturally slower to change which can be dangerous when dealing with the current issues the world faces, for example the proven increase in climate change consequences. The consequences of slow or no changes at all in systems, structures, and societal values fall disproportionately on women who are often now bearing more responsibility without the benefits due to outdated structures that were developed based on other environments and priorities. This gap between the formal structures and the rapidly changing environments and its effect on women can be seen through analyzing specific common trends in developing countries, such as the feminization of agriculture and climate change. Analyzing this gap from these specific trends can give insight into possible solutions to both speed up the closing of the gap and lessen the burdens for women in the meantime. The role of informal or community networks should be considered as a possible way to do this. The case of St. Lucia and its experience with both the feminization of agriculture and the threat of climate change will be analyzed to understand how informal or community networks could serve to help close the gap and lessen the burdens for women.
Created2020-05
153722-Thumbnail Image.png
Description
Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second,

Alfalfa is a major feed crop widely cultivated in the United States. It is the fourth largest crop in acreage in the US after corn, soybean, and all types of wheat. As of 2003, about 48% of alfalfa was produced in the western US states where alfalfa ranks first, second, or third in crop acreage. Considering that the western US is historically water-scarce and alfalfa is a water-intensive crop, it creates a concern about exacerbating the current water crisis in the US west. Furthermore, the recent increased export of alfalfa from the western US states to China and the United Arab Emirates has fueled the debate over the virtual water content embedded in the crop. In this study, I analyzed changes of cropland systems under the three basic scenarios, using a stylized model with a combination of dynamical, hydrological, and economic elements. The three scenarios are 1) international demands for alfalfa continue to grow (or at least to stay high), 2) deficit irrigation is widely imposed in the dry region, and 3) long-term droughts persist or intensify reducing precipitation. The results of this study sheds light on how distribution of crop areas responds to climatic, economic, and institutional conditions. First, international markets, albeit small compared to domestic markets, provide economic opportunities to increase alfalfa acreage in the dry region. Second, potential water savings from mid-summer deficit irrigation can be used to expand alfalfa production in the dry region. Third, as water becomes scarce, farmers more quickly switch to crops that make more economic use of the limited water.
ContributorsKim, Booyoung (Author) / Muneepeerakul, Rachata (Thesis advisor) / Ruddell, Benjamin (Committee member) / Aggarwal, Rimjhim (Committee member) / Arizona State University (Publisher)
Created2015
Description

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the

This study investigates the impact of urban form and landscaping type on the mid-afternoon microclimate in semi-arid Phoenix, Arizona. The goal is to find effective urban form and design strategies to ameliorate temperatures during the summer months. We simulated near-ground air temperatures for typical residential neighborhoods in Phoenix using the three-dimensional microclimate model ENVI-met. The model was validated using weather observations from the North Desert Village (NDV) landscape experiment, located on the Arizona State University's Polytechnic campus. The NDV is an ideal site to determine the model's input parameters, since it is a controlled environment recreating three prevailing residential landscape types in the Phoenix metropolitan area (mesic, oasis, and xeric). After validation, we designed five neighborhoods with different urban forms that represent a realistic cross-section of typical residential neighborhoods in Phoenix. The scenarios follow the Local Climate Zone (LCZ) classification scheme after Stewart and Oke. We then combined the neighborhoods with three landscape designs and, using ENVI-met, simulated microclimate conditions for these neighborhoods for a typical summer day. Results were analyzed in terms of mid-afternoon air temperature distribution and variation, ventilation, surface temperatures, and shading. Findings show that advection is important for the distribution of within-design temperatures and that spatial differences in cooling are strongly related to solar radiation and local shading patterns. In mid-afternoon, dense urban forms can create local cool islands. Our approach suggests that the LCZ concept is useful for planning and design purposes.

ContributorsMiddel, Ariane (Author) / Hab, Kathrin (Author) / Brazel, Anthony J. (Author) / Martin, Chris A. (Author) / Guhathakurta, Subhrajit (Author)
Created2014-02