Matching Items (26)
Filtering by

Clear all filters

148009-Thumbnail Image.png
Description

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential to replace industrial diesel engines as used in the company’s

This thesis explores the investigation of the project “Designing for a Post-Diesel Engine World”, a collaborative experiment between organizations within Arizona State University and an undisclosed company. This investigation includes the analysis of various renewable energy technologies and their potential to replace industrial diesel engines as used in the company’s business. In order to be competitive with diesel engines, the technology should match or exceed diesel in power output, have reduced environmental impact, and meet other criteria standards as determined by the company. The team defined the final selection criteria as: low environmental impact, high efficiency, high power, and high technology readiness level. I served as the lead Hydrogen Fuel Cell Researcher and originally hypothesized that PEM fuel cells would be the most viable solution. Results of the analysis led to PEM fuel cells and Li-ion batteries being top contenders, and the team developed a hybrid solution incorporating both of these technologies in a technical and strategic solution. The resulting solution design from this project has the potential to be modified and implemented in various industries and reduce overall anthropogenic emissions from industrial processes.

ContributorsFernandez, Alexandra Marie (Author) / Heller, Cheryl (Thesis director) / Smith, Tyler (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
136556-Thumbnail Image.png
Description
Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation

Due to the environmental problems caused by global warming, it has become necessary to reduce greenhouse gas emissions across the planet. Biofuels, such as ethanol, have proven to release cleaner emissions when combusted. However, large scale production of these alcohols is uneconomical and inefficient due to limitations in standard separation processes, the most common being distillation. Pervaporation is a novel separation technique that utilizes a specialized membrane to separate multicomponent solutions. In this research project, pervaporation utilizing ZIF-71/PDMS mixed matrix membranes are investigated to see their ability to recover ethanol from an ethanol/aqueous separation. Membranes with varying nanoparticle concentrations were created and their performances were analyzed. While the final results indicate that no correlation exists between nanoparticle weight percentage and selectivity, this technology is still a promising avenue for biofuel production. Future work will be conducted to improve this existing process and enhance membrane selectivity.
ContributorsHoward, Chelsea Elizabeth (Author) / Lind, Mary Laura (Thesis director) / Nielsen, David (Committee member) / Greenlee, Lauren (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor)
Created2015-05
136494-Thumbnail Image.png
Description
The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be

The goal of this research project is to create a mixed matrix membrane that can withstand very acidic environments but still be used to purify water. The ultimate goal of this membrane is to be used to purify urine both here on Earth and in space. The membrane would be able to withstand these harsh conditions due the incorporation of a resilient impermeable polymer layer that will be cast above the lower hydrophilic layer. Nanoparticles called zeolites will act as a water selective pathway through this impermeable layer and allow water to flow through the membrane. This membrane will be made using a variety of methods and polymers to determine both the cheapest and most effective way of creating this chemical resistant membrane. If this research is successful, many more water sources can be tapped since the membranes will be able to withstand hard conditions. This document is primarily focused on our progress on the development of a highly permeable polymer-zeolite film that makes up the bottom layer of the membrane. Multiple types of casting methods were investigated and it was determined that spin coating at 4000 rpm was the most effective. Based on a literature review, we selected silicalite-1 zeolites as the water-selective nanoparticle component dispersed in a casting solution of polyacrylonitrile in N-methylpyrrolidinone to comprise this hydrophilic layer. We varied the casting conditions of several simple solution-casting methods to produce thin films on the porous substrate with optimal film properties for our membrane design. We then cast this solution on other types of support materials that are more flexible and inexpensive to determine which combination resulted in the thinnest and most permeable film.
ContributorsHerrera, Sofia Carolina (Author) / Lind, Mary Laura (Thesis director) / Khosravi, Afsaneh (Committee member) / Hestekin, Jamie (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2015-05
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136927-Thumbnail Image.png
Description
The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP

The two central goals of this project were 1) to develop a testing method utilizing coatings on ultra-thin stainless steel to measure the thermal conductivity (k) of battery electrode materials and composites, and 2) to measure and compare the thermal conductivities of lithium iron phosphate (LiFePO4, "LFP") in industry-standard graphite/LFP mixtures as well as graphene/LFP mixtures and a synthesized graphene/LFP nanocomposite. Graphene synthesis was attempted before purchasing graphene materials, and further exploration of graphene synthesis is recommended due to limitations in purchased product quality. While it was determined after extensive experimentation that the graphene/LFP nanocomposite could not be successfully synthesized according to current literature information, a mixed composite of graphene/LFP was successfully tested and found to have k = 0.23 W/m*K. This result provides a starting point for further thermal testing method development and k optimization in Li-ion battery electrode nanocomposites.
ContributorsStehlik, Daniel Wesley (Author) / Chan, Candace K. (Thesis director) / Dai, Lenore (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136965-Thumbnail Image.png
Description
Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared

Currently, approximately 40% of the world’s electricity is generated from coal and coal power plants are one of the major sources of greenhouse gases accounting for a third of all CO2 emissions. The Integrated Gasification Combined Cycle (IGCC) has been shown to provide an increase in plant efficiency compared to traditional coal-based power generation processes resulting in a reduction of greenhouse gas emissions. The goal of this project was to analyze the performance of a new SNDC ceramic-carbonate dual-phase membrane for CO2 separation. The chemical formula for the SNDC-carbonate membrane was Sm0.075Nd0.075Ce0.85O1.925. This project also focused on the use of this membrane for pre-combustion CO2 capture coupled with a water gas shift (WGS) reaction for a 1000 MW power plant. The addition of this membrane to the traditional IGCC process provides a purer H2 stream for combustion in the gas turbine and results in lower operating costs and increased efficiencies for the plant. At 900 °C the CO2 flux and permeance of the SNDC-carbonate membrane were 0.65 mL/cm2•min and 1.0×10-7 mol/m2•s•Pa, respectively. Detailed in this report are the following: background regarding CO2 separation membranes and IGCC power plants, SNDC tubular membrane preparation and characterization, IGCC with membrane reactor plant design, process heat and mass balance, and plant cost estimations.
ContributorsDunteman, Nicholas Powell (Author) / Lin, Jerry (Thesis director) / Dong, Xueliang (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor)
Created2014-05
137034-Thumbnail Image.png
Description
The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks

The recovery of biofuels permits renewable alternatives to present day fossil fuels that cause devastating effects on the planet. Pervaporation is a separation process that shows promise for the separation of ethanol from biologically fermentation broths. The performance of thin film composite membranes of polydimethylsiloxane (PDMS) and zeolite imidazolate frameworks (ZIF-71) dip coated onto a porous substrate are analyzed. Pervaporation performance factors of flux, separation factor and selectivity are measured for varying ZIF-71 loadings of pure PDMS, 5 wt%, 12.5 wt% and 25 wt% at 60 oC with a 2 wt% ethanol/water feed. The increase in ZIF-71 loadings increased the performance of PDMS to produce higher flux, higher separation factor and high selectivity than pure polymeric films.
ContributorsLau, Ching Yan (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Lively, Ryan (Committee member) / Barrett, The Honors College (Contributor) / School of International Letters and Cultures (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
136987-Thumbnail Image.png
Description
In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests

In this research, construction of a model membrane system using Polyvinylidene Chloride-Co Acrylonitrile and Linde Type A zeolites is described. The systems aims to separate out flow through zeolite pores and flow through interfaces between zeolites and polymers through the use of pore filled and pore open zeolites. Permeation tests and salt rejection tests were performed, and the data analyzed to yield approximation of separated flow through zeolites and interfaces. This work concludes the more work is required to bring the model system into a functioning state. New polymer selections and new techniques to produce the membrane system are described for future work.
ContributorsShabilla, Andrew Daniel (Author) / Lind, Mary Laura (Thesis director) / Lin, Jerry (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137744-Thumbnail Image.png
Description
The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results

The effect of ammonium on microbial fermentation was investigated to improve the efficiency of microbial electrochemical cells (MXC). Electron balances of anaerobic microbial cultures with varying ammonium concentrations (reported as g N-NH4+/L) were used to study the distribution of electrons from different fermentable substrates to acetate, propionate, and methane. Results showed that with a high ammonium concentration (between 2.25 to 3g N-NH4+/L) fewer electrons routed to methane during the fermentation of 300 me-eq./L of electron donors .The majority of electrons (~ 60-80%) in the serum bottles experiments were routed to acetate and propionate for all fermentable substrates with high ammonium concentration. While methane cannot be utilized by anode respiring bacteria (ARBs) to produce current, both acetate and propionate can, which could lead to higher Coulombic efficiencies in MXCs. Experiments in microbial electrolysis cells (MECs) with glucose, lactate, and ethanol were performed. MEC experiments showed low percentage of electrons to current (between 10-30 %), potentially due to low anode surface area (~ 3cm2) used during these experiments. Nevertheless, the fermentation process observed in the MECs was similar to serum bottles results which showed significant diversion of electrons to acetate and propionate (~ 80%) for a control concentration of 0.5 g N-NH4+/L .
ContributorsLozada Guerra, Suyana Patricia (Co-author) / Joseph, Miceli (Co-author) / Krajmalnik-Brown, Rosa (Thesis director) / Torres, Cesar (Committee member) / Young, Michelle (Committee member) / Barrett, The Honors College (Contributor) / Chemical Engineering Program (Contributor)
Created2013-05