Matching Items (7)
Filtering by

Clear all filters

136588-Thumbnail Image.png
Description
Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create

Healthcare systems and health insurance are both concepts implemented in every country to provide access to the general population. Countries undergo healthcare reforms in order to increase the performance of the system. In 2010, the Affordable Care Act (ACA) was introduced in the United States to increase coverage and create a more inclusive health insurance market. For comparison, the recent reforms in Chile and Singapore were observed as points to determine what concepts work well and what can be implemented in the U.S. system. Unlike the United States, Chile and Singapore completely altered the system that was previously in use. In Chile, the reforms began in the 1970s and made two more major changes in 1973 and early 2000s. Singapore began its reform in the 1960s and created the medical savings account system that is still in use today. To analyze the system further, the medical professions of neurology, physician assistants and optometry were compared in each country. In regards to neurology, the coverage of services in Chile and Singapore are similar in that select medical procedures are covered. In contrast, the United States offers coverage on a case-by-case basis. For physician assistants, such a profession does not exist in Chile or Singapore. In the United States, the profession is rapidly expanding, and coverage is offered for most services provided. Optometry is a stand-alone profession in both the U.S. and Singapore. The services provided by the optometrists are selectively covered by insurance, depending on whether it is considered a medical problem. Chile covers the services often provided by optometrists, however, the ophthalmologist is the provider, as optometry does not exist. This study concluded that the U.S. should continue to provide a more inclusive healthcare system that includes vision and dental care. The U.S., like Singapore, should also adopt a more integrative system. Under this system, patient care would be provided in a way that professionals specializing in the care are included in every step of the process.
ContributorsLa, Jenny (Co-author) / Feruj, Farihah (Co-author) / Morrison, Sarah (Co-author) / Gaughan, Monica (Thesis director) / Essary, Alison (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
137220-Thumbnail Image.png
Description
In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month

In 2007, the Center for Biological Diversity (CBD) petitioned the United States Fish and Wildlife Service (USFWS) and the California Department of Fish and Wildlife (CDFW) to list the American pika (Ochotona princeps) as an endangered species. After several petition denials, the petition was evaluated during both 90-day, and 12-month reviews. Ultimately, both petitions were denied and the pika was not given protection under the Endangered Species Act (ESA). During the petitioning years, 2007 through 2013, there were many newspaper publications, press releases, and blog entries supporting the listing of the pika. Information published by these media ranged from misleading, to scientifically inaccurate. The public was swayed by these publications, and showed their support for listing the pika during the public comment period throughout the 12-month status review in California. While the majority of the public comments were in favor of listing the pika, there were a few letters that criticized the CBD for making a poster child out of a "cute" species. During the 12-month status review, the CDFW contacted pika experts and evaluated scientific literature to gain an understanding of the American pika's status. Seven years after the original petition, the CDFW denied listing the pika on the grounds that the species is not expected to become extinct in the next few decades. This case serves as an example where a prominent organization, the CBD, petitions to list a species that does not warrant protection. Their goal of making the pika the face of climate change failed when species was examined.
ContributorsBasso, Samantha Joy (Author) / Smith, Andrew (Thesis director) / Minteer, Ben (Committee member) / Angilletta, Michael (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2014-05
131157-Thumbnail Image.png
Description
Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment.

Following the journey through the sewerage system, wastewater is subject to a series of purification procedures, prior to water reuse and disposal of the resultant sewage sludge. Biosolids, also known as treated sewage sludge, deemed fit for application on land, is a nutrient-rich, semisolid byproduct of biological wastewater treatment. Technological progression in metagenomics has allowed for large-scale analysis of complex viral communities in a number of samples, including wastewater. Members of the Microviridae family are non-enveloped, ssDNA bacteriophages, and are known to infect enterobacteria. Members of the Genomoviridae family similarly are non-enveloped, ssDNA viruses, but are presumed to infect fungi rather than eubacteria. As these two families of viruses are not relatively documented and their diversity poorly classified, this study aimed to analyze the presence of genomoviruses and the diversity of microviruses in nine samples representative of wastewater in Arizona and other regions of the United States. Using a metagenomic approach, the nucleic acids of genomoviruses and microviruses were isolated, assembled into complete genomes, and characterized through visual analysis: a heat chart showing percent coverage for genomoviruses and a circular phylogenetic tree showing diversity of microviruses. The heat map results for the genomoviruses showed a large presence of 99 novel sequences in all nine wastewater samples. Additionally, the 535 novel microviruses displayed great diversity in the cladogram, both in terms of sub-family and isolation source. Further research should be conducted in order to classify the taxonomy of microviruses and the diversity of genomoviruses. Finally, this study suggests future exploration of the viral host, prior to entering the wastewater system.
ContributorsSchreck, Joshua Reuben (Author) / Varsani, Arvind (Thesis director) / Rolf, Halden (Committee member) / Misra, Rajeev (Committee member) / School of Film, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
131610-Thumbnail Image.png
Description

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only

The combined use of methamphetamine and opioids has been reported to be on the rise throughout the United States (U.S.). However, our knowledge of this phenomenon is largely based upon reported overdoses and overdose-related deaths, law enforcement seizures, and drug treatment records; data that are often slow, restricted, and only track a portion of the population participating in drug consumption activities. As an alternative, wastewater-based epidemiology (WBE) has the capability to track licit and illicit drug trends within an entire community, at a low cost and in near real-time, while providing anonymity to those contributing to the sewer shed. In this study, wastewater was collected from two Midwestern U.S. cities (2017-2019) and analyzed for the prevalence of methamphetamine and the opioids oxycodone, codeine, fentanyl, tramadol, hydrocodone, and hydromorphone. Monthly 24-hour time-weighted composite samples (n = 48) from each city were analyzed using isotope dilution liquid chromatography tandem mass spectrometry. Results showed that methamphetamine and total opioid consumption (milligram morphine equivalents) in City 1 were strongly correlated only in 2017 (Spearman rank order correlation coefficient, ρ = 0.78), the relationship driven by fentanyl, hydrocodone, and hydromorphone. For City 2, methamphetamine and total opioid consumption were strongly positively correlated during the entire study (ρ = 0.54), with the correlations driven by hydrocodone and hydromorphone. In both cities, hydrocodone and hydromorphone mass loads were highly correlated, suggesting a parent and metabolite relationship. WBE provides important insights into licit and illicit drug consumption patterns in near real-time as they evolve; important information for community stakeholders in municipalities across the U.S.

ContributorsClick, Kathleen Grace (Author) / Halden, Rolf (Thesis director) / Gushgari, Adam (Committee member) / Driver, Erin (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
135239-Thumbnail Image.png
Description
Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water

Nitrate (NO3- ) and selenate (SeO42-) are common contaminants found in mining wastewater. Biological treatment has proved successful using bacteria capable of respiring NO3- into nitrogen gas and SeO42- into Se°. The Membrane Biofilm Reactor (MBfR) utilizes biofilm communities on the surface of hollow-fiber membranes to transform oxidized water contaminants into innocuous reduced products. For this project, I set up two MBfRs in a lead and lag configuration to reduce NO3- [input at ~40-45 mg NO3-N/L] and SeO42- [0.62 mg/L], while avoiding sulfate (SO42-) [~1600-1660 mg/L] reduction. Over the course of three experimental phases, I controlled two operating conditions: the applied hydrogen pressure and the total electron acceptor loading. NO3- in the lead MBfR showed average reductions of 50%, 94%, and 91% for phases I, II, and III, respectively. In the lag MBfR, NO3- was reduced by 40%, 96%, and 100% for phases I, II, and III. NO2- was formed in Stage I when NO3- was not reduced completely; nevertheless NO2- accumulation was absent for the remainder of operation. In the lead MBfR, SeO42- was reduced by 65%, 87%, and 50% for phases I, II, and III. In the lag MBfR, SeO42- was reduced 60%, 27%, and 23% for phases I, II, and III. SO42- was not reduced in either MBfR. Biofilm communities were composed of denitrifying bacteria Rhodocyclales and Burkholderiales, Dechloromonas along with the well-known SeO42--reducing Thauera were abundant genera in the biofilm communities. Although SO42- reduction was suppressed, sulfate-reducing bacteria were present in the biofilm. To optimize competition for electron donor and space in the biofilm, optimal operational conditions were hydrogen pressures of 26 and 7 psig and total electron acceptor loading of 3.8 and 3.4 g H2/m2 day for the lead and lag MBfR, respectively.
ContributorsMehta, Sanya Vipul (Author) / Rittmann, Bruce (Thesis director) / Ontiveros-Valencia, Aura (Committee member) / Chemical Engineering Program (Contributor) / School of International Letters and Cultures (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
171276-Thumbnail Image.png
Description
Despite cryptocurrencies exploding in popularity over the past decade, the US government has engaged very little with them and their underlying technology, blockchain. This discrepancy between widespread use and a lack of regulation has constructed a murky environment remarkably profitable to criminal actors and even some nation-states. In particular, the

Despite cryptocurrencies exploding in popularity over the past decade, the US government has engaged very little with them and their underlying technology, blockchain. This discrepancy between widespread use and a lack of regulation has constructed a murky environment remarkably profitable to criminal actors and even some nation-states. In particular, the blockchain's technical characteristics are being exploited to financially incentivize ransomware, theft, sanctions evasion, espionage and more. Through a critical examination of its history and applications, this thesis explores how blockchain technology undermines deterrence efforts and poses serious national security threats.
ContributorsGrossman, Daniel (Author) / Schmidle, Robert (Thesis director) / Whittaker, Scott (Committee member) / Anderson, Ian (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2022-12
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01