Matching Items (15)
Filtering by

Clear all filters

149994-Thumbnail Image.png
Description
A distinct characteristic of ferroelectric materials is the existence of a reversible spontaneous polarization with the application of an electric field. The relevant properties ferroelectric lithium niobate surfaces include a low density of defects and external screening of the bound polarization charge. These properties result in unique surface electric field

A distinct characteristic of ferroelectric materials is the existence of a reversible spontaneous polarization with the application of an electric field. The relevant properties ferroelectric lithium niobate surfaces include a low density of defects and external screening of the bound polarization charge. These properties result in unique surface electric field distribution with a strong electric field in the vicinity of domain boundaries, while away from the boundaries, the field decreases rapidly. In this work, ferroelectric lithium niobate (LN) is used as a template to direct the assembly of metallic nanostructures via photo-induced reduction and a substrate for deposition of ZnO semiconducting thin films via plasma enhanced atomic layer deposition (PE-ALD). To understand the mechanism the photo-induced deposition process the following effects were considered: the illumination photon energy and intensity, the polarization screening mechanism of the lithium niobate template and the chemical concentration. Depending on the UV wavelength, variation of Ag deposition rate and boundary nanowire formation are observed and attributed to the unique surface electric field distribution of the polarity patterned template and the penetration depth of UV light. Oxygen implantation is employed to transition the surface from external screening to internal screening, which results in depressed boundary nanowire formation. The ratio of the photon flux and Ag ion flux to the surface determine the deposition pattern. Domain boundary deposition is enhanced with a high photon/Ag ion flux ratio while domain boundary deposition is depressed with a low photon/Ag ion flux ratio. These results also support the photo-induced deposition model where the process is limited by carrier generation, and the cation reduction occurs at the surface. These findings will provide a foundational understanding to employ ferroelectric templates for assembly and patterning of inorganic, organic, biological, and integrated structures. ZnO films deposited on positive and negative domain surfaces of LN demonstrate different I-V curve behavior at different temperatures. At room temperature, ZnO deposited on positive domains exhibits almost two orders of magnitude greater conductance than on negative domains. The conductance of ZnO on positive domains decreases with increasing temperature while the conductance of ZnO on negative domains increases with increasing temperature. The observations are interpreted in terms of the downward or upward band bending at the ZnO/LN interface which is induced by the ferroelectric polarization charge. Possible application of this effect in non-volatile memory devices is proposed for future work.
ContributorsSun, Yang (Author) / Nemanich, Robert (Thesis advisor) / Bennett, Peter (Committee member) / Sukharev, Maxim (Committee member) / Ros, Robert (Committee member) / McCartney, Martha (Committee member) / Arizona State University (Publisher)
Created2011
150163-Thumbnail Image.png
Description
With the advent of the X-ray free-electron laser (XFEL), an opportunity has arisen to break the nexus between radiation dose and spatial resolution in diffractive imaging, by outrunning radiation damage altogether when using single X-ray pulses so brief that they terminate before atomic motion commences. This dissertation concerns the application

With the advent of the X-ray free-electron laser (XFEL), an opportunity has arisen to break the nexus between radiation dose and spatial resolution in diffractive imaging, by outrunning radiation damage altogether when using single X-ray pulses so brief that they terminate before atomic motion commences. This dissertation concerns the application of XFELs to biomolecular imaging in an effort to overcome the severe challenges associated with radiation damage and macroscopic protein crystal growth. The method of femtosecond protein nanocrystallography (fsPNX) is investigated, and a new method for extracting crystallographic structure factors is demonstrated on simulated data and on the first experimental fsPNX data obtained at an XFEL. Errors are assessed based on standard metrics familiar to the crystallography community. It is shown that resulting structure factors match the quality of those measured conventionally, at least to 9 angstrom resolution. A new method for ab-initio phasing of coherently-illuminated nanocrystals is then demonstrated on simulated data. The method of correlated fluctuation small-angle X-ray scattering (CFSAXS) is also investigated as an alternative route to biomolecular structure determination, without the use of crystals. It is demonstrated that, for a constrained two-dimensional geometry, a projection image of a single particle can be formed, ab-initio and without modeling parameters, from measured diffracted intensity correlations arising from disordered ensembles of identical particles illuminated simultaneously. The method is demonstrated experimentally, based on soft X-ray diffraction from disordered but identical nanoparticles, providing the first experimental proof-of-principle result. Finally, the fundamental limitations of CFSAXS is investigated through both theory and simulations. It is found that the signal-to-noise ratio (SNR) for CFSAXS data is essentially independent of the number of particles exposed in each diffraction pattern. The dependence of SNR on particle size and resolution is considered, and realistic estimates are made (with the inclusion of solvent scatter) of the SNR for protein solution scattering experiments utilizing an XFEL source.
ContributorsKirian, Richard A (Author) / Spence, John C. H. (Committee member) / Doak, R. Bruce (Committee member) / Weierstall, Uwe (Committee member) / Bennett, Peter (Committee member) / Treacy, Michael M. J. (Committee member) / Arizona State University (Publisher)
Created2011
150198-Thumbnail Image.png
Description
In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also

In this project, a novel method is presented for measuring the resistivity of nanoscale metallic conductors (nanowires) using a variable-spacing 2-point method with a modified ultrahigh vacuum scanning tunneling microscope. An auxiliary field emission imaging method that allows for scanning insulating surfaces using a large gap distance (20nm) is also presented. Using these methods, the resistivity of self-assembled endotaxial FeSi2 nanowires (NWs) on Si(110) was measured. The resistivity was found to vary inversely with NW width, being rhoNW = 200 uOhm cm at 12 nm and 300 uOhm cm at 2 nm. The increase at small w is attributed to boundary scattering, and is fit to the Fuchs-Sondheimer model, yielding values of rho0 = 150 uOhm cm and lambda = 2.4 nm, for specularity parameter p = 0.5. These results are attributed to a high concentration of point defects in the FeSi2 structure, with a correspondingly short inelastic electron scattering length. It is remarkable that the defect concentration persists in very small structures, and is not changed by surface oxidation.
ContributorsTobler, Samuel (Author) / Bennett, Peter (Thesis advisor) / McCartney, Martha (Committee member) / Tao, Nongjian (Committee member) / Doak, Bruce (Committee member) / Chen, Tingyong (Committee member) / Arizona State University (Publisher)
Created2011
151589-Thumbnail Image.png
Description
Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found

Zeolites are a class of microporous materials that are immensely useful as molecular sieves and catalysts. While there exist millions of hypothetical zeolite topologies, only 206 have been recognized to exist in nature, and the question remains: What distinguishes known zeolite topologies from their hypothetical counterparts? It has been found that all 206 of the known zeolites can be represented as networks of rigid perfect tetrahedra that hinge freely at the connected corners. The range of configurations over which the corresponding geometric constraints can be met has been termed the "flexibility window". Only a small percentage of hypothetical types exhibit a flexibility window, and it is thus proposed that this simple geometric property, the existence of a flexibility window, provides a reliable benchmark for distinguishing potentially realizable hypothetical structures from their infeasible counterparts. As a first approximation of the behavior of real zeolite materials, the flexibility window provides additional useful insights into structure and composition. In this thesis, various methods for locating and exploring the flexibility window are discussed. Also examined is the assumption that the tetrahedral corners are force-free. This is a reasonable approximation in silicates for Si-O-Si angles above ~135°. However, the approximation is poor for germanates, where Ge-O-Ge angles are constrained to the range ~120°-145°. Lastly, a class of interesting low-density hypothetical zeolites is evaluated based on the feasibility criteria introduced.
ContributorsDawson, Colby (Author) / Treacy, Michael M. J. (Thesis advisor) / O'Keeffe, Michael (Committee member) / Thorpe, Michael F. (Committee member) / Rez, Peter (Committee member) / Bennett, Peter (Committee member) / Arizona State University (Publisher)
Created2013
150661-Thumbnail Image.png
Description
Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from

Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates a nanosecond scale measurement of the gold atomic contact breakdown process. A combined setup of DC and AC circuits is employed, where the AC circuit reveals interesting observations in nanosecond scale not previously seen using conventional DC circuits. The breakdown time of gold atomic contacts is determined to be faster than 0.1 ns and subtle atomic events are observed within nanoseconds. Furthermore, a new method based on the scanning tunneling microscope break junction (STM-BJ) technique is developed to rapidly record thousands of I-V curves from repeatedly formed single molecule junctions. 2-dimensional I-V and conductance-voltage (G-V) histograms constructed using the acquired data allow for more meaningful statistical analysis to single molecule I-V characteristics. The bias voltage adds an additional dimension to the conventional single molecule conductance measurement. This method also allows one to perform transition voltage spectra (TVS) for individual junctions and to study the correlation between the conductance and the tunneling barrier height. The variation of measured conductance values is found to be primarily determined by the poorly defined contact geometry between the molecule and metal electrodes, rather than the tunnel barrier height. In addition, the rapid I-V technique is also found useful in studying thermoelectric effect in single molecule junctions. When applying a temperature gradient between the STM tip and substrate in air, the offset current at zero bias in the I-V characteristics is a measure of thermoelectric current. The rapid I-V technique allows for statistical analysis of such offset current at different temperature gradients and thus the Seebeck coefficient of single molecule junctions is measured. Combining with single molecule TVS, the Seebeck coefficient is also found to be a measure of tunnel barrier height.
ContributorsGuo, Shaoyin (Author) / Tao, Nongjian (Thesis advisor) / Bennett, Peter (Committee member) / Ning, Cun-Zheng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150485-Thumbnail Image.png
Description
Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The structure of ACC and the mechanisms by which it transforms

Many species e.g. sea urchin form amorphous calcium carbonate (ACC) precursor phases that subsequently transform into crystalline CaCO3. It is certainly possible that the biogenic ACC might have more than 10 wt% Mg and ∼ 3 wt% of water. The structure of ACC and the mechanisms by which it transforms to crystalline phase are still poorly understood. In this dissertation our goal is to determine an atomic structure model that is consistent with diffraction and IR measurements of ACC. For this purpose a calcite supercell with 24 formula units, containing 120 atoms, was constructed. Various configurations with substitution of Ca by 6 Mg ions (6 wt.%) and insertion of 3-5 H2O molecules (2.25-3.75 wt.%) in the interstitial positions of the supercell, were relaxed using a robust density function code VASP. The most noticeable effects were the tilts of CO3 groups and the distortion of Ca sub-lattice, especially in the hydrated case. The distributions of Ca-Ca nearest neighbor distance and CO3 tilts were extracted from various configurations. The same methods were also applied to aragonite. Sampling from the calculated distortion distributions, we built models for amorphous calcite/aragonite of size ∼ 1700 nm3 based on a multi-scale modeling scheme. We used these models to generate diffraction patterns and profiles with our diffraction code. We found that the induced distortions were not enough to generate a diffraction profile typical of an amorphous material. We then studied the diffraction profiles from several nano-crystallites as recent studies suggest that ACC might be a random array of nanocryatallites. It was found that the generated diffraction profile from a nano-crystallite of size ∼ 2 nm3 is similar to that from the ACC.
ContributorsSinha, Sourabh (Author) / Rez, Peter (Thesis advisor) / Bearat, Hamdallah A. (Committee member) / Bennett, Peter A. (Committee member) / McCartney, Martha R. (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2012
136997-Thumbnail Image.png
Description
In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was

In this experiment, an attempt was made to measure the index of refraction of a thin glass microscope slide, with a known thickness of 1.01 mm. A monochromatic laser with wavelength of 532nm was employed to generate the interference pattern through the use of a Michelson interferometer. The slide was placed in the path of one of the beams. The slide could then be rotated through a series of angles, and, from the resulting changes in the interference pattern, the index of refraction of the slide could be extracted. The index of refraction was found to be 1.5±0.02.
ContributorsSwenson, Jordan (Author) / Sukharev, Maxim (Thesis director) / Bennett, Peter (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor)
Created2014-05
149639-Thumbnail Image.png
Description
The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the

The research of this dissertation involved quantitative characterization of electrostatic potential and charge distribution of semiconductor nanostructures using off-axis electron holography, as well as other electron microscopy techniques. The investigated nanostructures included Ge quantum dots, Ge/Si core/shell nanowires, and polytype heterostructures in ZnSe nanobelts. Hole densities were calculated for the first two systems, and the spontaneous polarization for wurtzite ZnSe was determined. Epitaxial Ge quantum dots (QDs) embedded in boron-doped silicon were studied. Reconstructed phase images showed extra phase shifts near the base of the QDs, which was attributed to hole accumulation in these regions. The resulting charge density was (0.03±0.003) holes
m3, which corresponded to about 30 holes localized to a pyramidal, 25-nm-wide Ge QD. This value was in reasonable agreement with the average number of holes confined to each Ge dot determined using a capacitance-voltage measurement. Hole accumulation in Ge/Si core/shell nanowires was observed and quantified using off-axis electron holography and other electron microscopy techniques. High-angle annular-dark-field scanning transmission electron microscopy images and electron holograms were obtained from specific nanowires. The intensities of the former were utilized to calculate the projected thicknesses for both the Ge core and the Si shell. The excess phase shifts measured by electron holography across the nanowires indicated the presence of holes inside the Ge cores. The hole density in the core regions was calculated to be (0.4±0.2)
m3 based on a simplified coaxial cylindrical model. Homogeneous zincblende/wurtzite heterostructure junctions in ZnSe nanobelts were studied. The observed electrostatic fields and charge accumulation were attributed to spontaneous polarization present in the wurtzite regions since the contributions from piezoelectric polarization were shown to be insignificant based on geometric phase analysis. The spontaneous polarization for the wurtzite ZnSe was calculated to be psp = -(0.0029±0.00013) C/m2, whereas a first principles' calculation gave psp = -0.0063 C/m2. The atomic arrangements and polarity continuity at the zincblende/wurtzite interface were determined through aberration-corrected high-angle annular-dark-field imaging, which revealed no polarity reversal across the interface. Overall, the successful outcomes of these studies confirmed the capability of off-axis electron holography to provide quantitative electrostatic information for nanostructured materials.
ContributorsLi, Luying (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Treacy, Michael J. (Committee member) / Shumway, John (Committee member) / Drucker, Jeffery (Committee member) / Arizona State University (Publisher)
Created2011
149364-Thumbnail Image.png
Description
The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials of interest, including monolayer Co nanorings, multilayer Co/Cu/Py (Permalloy, Ni81Fe19) spin-valve nanorings, and notched Py nanowires, which were fabricated via

The research of this dissertation has involved the nanoscale quantitative characterization of patterned magnetic nanostructures and devices using off-axis electron holography and Lorentz microscopy. The investigation focused on different materials of interest, including monolayer Co nanorings, multilayer Co/Cu/Py (Permalloy, Ni81Fe19) spin-valve nanorings, and notched Py nanowires, which were fabricated via a standard electron-beam lithography (EBL) and lift-off process. Magnetization configurations and reversal processes of Co nanorings, with and without slots, were observed. Vortex-controlled switching behavior with stepped hysteresis loops was identified, with clearly defined onion states, vortex states, flux-closure (FC) states, and Omega states. Two distinct switching mechanisms for the slotted nanorings, depending on applied field directions relative to the slot orientations, were attributed to the vortex chirality and shape anisotropy. Micromagnetic simulations were in good agreement with electron holography observations of the Co nanorings, also confirming the switching field of 700-800 Oe. Co/Cu/Py spin-valve slotted nanorings exhibited different remanent states and switching behavior as a function of the different directions of the applied field relative to the slots. At remanent state, the magnetizations of Co and Py layers were preferentially aligned in antiparallel coupled configuration, with predominant configurations in FC or onion states. Two-step and three-step hysteresis loops were quantitatively determined for nanorings with slots perpendicular, or parallel to the applied field direction, respectively, due to the intrinsic coercivity difference and interlayer magnetic coupling between Co and Py layers. The field to reverse both layers was on the order of ~800 Oe. Domain-wall (DW) motion within Py nanowires (NWs) driven by an in situ magnetic field was visualized and quantified. Different aspects of DW behavior, including nucleation, injection, pinning, depinning, relaxation, and annihilation, occurred depending on applied field strength. A unique asymmetrical DW pinning behavior was recognized, depending on DW chirality relative to the sense of rotation around the notch. The transverse DWs relaxed into vortex DWs, followed by annihilation in a reversed field, which was in agreement with micromagnetic simulations. Overall, the success of these studies demonstrated the capability of off-axis electron holography to provide valuable insights for understanding magnetic behavior on the nanoscale.
ContributorsHe, Kai (Author) / McCartney, Martha R. (Thesis advisor) / Smith, David J. (Thesis advisor) / Chamberlin, Ralph V. (Committee member) / Crozier, Peter A. (Committee member) / Drucker, Jeff (Committee member) / Arizona State University (Publisher)
Created2010
154170-Thumbnail Image.png
Description
A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy

A theoretical study of a three-dimensional (3D) N/S interface with arbitrary spin

polarization and interface geometry is presented. The 3D model gives the same intrinsic

spin polarization and superconducting gap dependence as the 1D model. This

demonstrates that the 1D model can be use to t 3D data.

Using this model, a Heusler alloy is investigated. Andreev reflection measurements

show that the spin polarization is 80% in samples sputtered on unheated MgO(100)

substrates and annealed at high temperatures. However, the spin polarization is

considerably smaller in samples deposited on heated substrates.

Ferromagnetic FexSi􀀀x alloys have been proposed as potential spin injectors into

silicon with a substantial spin polarization. Andreev Reflection Spectroscopy (ARS) is

utilized to determine the spin polarization of both amorphous and crystalline Fe65Si35

alloys. The amorphous phase has a significantly higher spin polarization than that of

the crystalline phase.

In this thesis, (1111) Fe SmO0:82F0:18FeAs and Pb superconductors are used to

measure the spin polarization of a highly spin-polarized material, La0:67Sr0:33MnO3.

Both materials yield the same intrinsic spin polarization, therefore, Fe-superconductors

can be used in ARS. Based on the behavior of the differential conductance for highly

spin polarized LSMO and small polarization of Au, it can be concluded that the Fe-Sc

is not a triplet superconductor.

Zero bias anomaly (ZBA), in point contact Andreev reflection (PCAR), has been

utilized as a characteristic feature to reveal many novel physics. Complexities at a

normal metal/superconducting interface often cause nonessential ZBA-like features,

which may be mistaken as ZBA. In this work, it is shown that an extrinsic ZBA,

which is due to the contact resistance, cannot be suppressed by a highly spin-polarized

current while a nonessential ZBA cannot be affected the contact resistance.

Finally, Cu/Cu multilayer GMR structures were fabricated and the GMR% measured

at 300 K and 4.5 K gave responses of 63% and 115% respectively. Not only

do the GMR structures have a large enhancement of resistance, but by applying an

external magnetic eld it is shown that, unlike most materials, the spin polarization

can be tuned to values of 0.386 to 0.415 from H = 0 kOe to H = 15 kOe.
ContributorsGifford, Jessica Anna (Author) / Chen, Tingyong (Thesis advisor) / Bennett, Peter (Committee member) / Nemanich, Robert (Committee member) / Tsen, Kong-Thon (Committee member) / Arizona State University (Publisher)
Created2015