Matching Items (14)
Filtering by

Clear all filters

136399-Thumbnail Image.png
Description
Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City,

Defines the concept of the arcology as conceived by architect Paolo Soleri. Arcology combines "architecture" and "ecology" and explores a visionary notion of a self-contained urban community that has agricultural, commercial, and residential facilities under one roof. Two real-world examples of these projects are explored: Arcosanti, AZ and Masdar City, Abu Dhabi, UAE. Key aspects of the arcology that could be applied to an existing urban fabric are identified, such as urban design fostering social interaction, reduction of automobile dependency, and a development pattern that combats sprawl. Through interviews with local representatives, a holistic approach to applying arcology concepts to the Phoenix Metro Area is devised.
ContributorsSpencer, Sarah Anne (Author) / Manuel-Navarrete, David (Thesis director) / Salon, Deborah (Committee member) / Barrett, The Honors College (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / School of Sustainability (Contributor)
Created2015-05
136641-Thumbnail Image.png
Description
This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as

This paper explores the relationship between wildfire management and the consideration of ecological and environmental concerns in Arizona. To get a proper perspective on the current state of wildfire management in Arizona, information on two wildfire management programs, the Four Forests Restoration Initiative and FireScape, was researched and analyzed, as well as contemporary fire policy, a history of wildfire in Arizona, and two recent fires in Sedona, AZ. The two fires in Sedona, the Brins Fire of 2006 and the Slide Fire of 2014, act as a focal point for this ecological management transition, as even within an 8-year period, we can see the different ways the two fires were managed and the transition to a greater ecological importance in management strategies. These all came together to give a full spectrum for the factors that have led to more ecologically-prominent wildfire management strategies in Arizona.
ContributorsGeorge-Sills, Dylan (Author) / Pyne, Stephen (Thesis director) / Hirt, Paul (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2015-05
137132-Thumbnail Image.png
Description
It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying

It is well known that deficiencies in key chemical elements (such as phosphorus, P) can reduce animal growth; however, recent empirical data have shown that high levels of dietary nutrients can also reduce animal growth. In ecological stoichiometry, this phenomenon is known as the "stoichiometric knife edge," but its underlying mechanisms are not well-known. Previous work has suggested that the crustacean zooplankter Daphnia reduces its feeding rates on phosphorus-rich food, causing low growth due to insufficient C (energy) intake. To test for this mechanism, feeding rates of Daphnia magna on algae (Scenedesmus acutus) differing in C:P ratio (P content) were determined. Overall, there was a significant difference among all treatments for feeding rate (p < 0.05) with generally higher feeding rates on P-rich algae. These data indicate that both high and low food C:P ratio do affect Daphnia feeding rate but are in contradiction with previous work that showed that P-rich food led to strong reductions in feeding rate. Additional experiments are needed to gain further insights.
ContributorsSchimpp, Sarah Ann (Author) / Elser, James (Thesis director) / Neuer, Susanne (Committee member) / Peace, Angela (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2014-05
137117-Thumbnail Image.png
Description
This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student

This thesis aims to evaluate how in classroom demonstrations compare to regular education techniques, and how student learning styles affect interest in science and engineering as future fields of study. Science education varies between classrooms, but usually is geared towards lecture and preparation for standardized exams without concern for student interest or enjoyment.5 To discover the effectiveness of demonstrations in these concerns, an in classroom demonstration with a water filtration experiment was accompanied by several modules and followed by a short survey. Hypotheses tested included that students would enjoy the demonstration more than a typical class session, and that of these students, those with more visual or tactile learning styles would identify with science or engineering as a possible major in college. The survey results affirmed the first hypothesis, but disproved the second hypothesis; thus illustrating that demonstrations are enjoyable, and beneficial for sparking or maintaining student interest in science across all types of students.
ContributorsPiper, Jessica Marie (Author) / Lind, Mary Laura (Thesis director) / Montoya-Gonzales, Roxanna (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / Chemical Engineering Program (Contributor)
Created2014-05
137652-Thumbnail Image.png
Description
With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning

With the overall health of the environment rapidly declining \u2014 mostly due to human behaviors, solving the problem of nature deficit disorder and getting more children interested and aware of nature could be paramount to improving the environmental health of our planet. In this study, the relationship between children's learning and emotion is explored. Pre- and post-tests were given to children attending a week-long summer freshwater ecology camp; their knowledge of and emotional connection to different ecological concepts were measured. Two separate ecosystems were tested \u2014 a freshwater ecosystem that was taught over the course of the week, and a marine ecosystem for comparison. Increases in knowledge and emotion were seen in every freshwater ecosystem concept. Additionally, the knowledge and emotion scores were correlated, suggesting a positive relationship between them. The marine ecosystem did not show improvements in concrete knowledge, but showed increases in abstract learning, indicating that the abstract concepts learned about the freshwater ecosystem were able to transfer to the marine. Overall results show the ability of a hands-on learning experience to foster an emotional connection between a child and the subject matter. However, long-term studies are needed to track the relationship between children and their knowledge of and emotional connection to the subject matter.
ContributorsMossler, Max Vaughn (Author) / Pearson, David (Thesis director) / Smith, Andrew (Committee member) / Berkowitz, Alan (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Life Sciences (Contributor)
Created2013-05
132293-Thumbnail Image.png
Description
Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and

Membrane-based technology for gas separations is currently at an emerging stage of advancement and adoption for environmental and industrial applications due to its substantial advantages like lower energy and operating costs over the conventional gas separation technologies. Unfortunately, the available polymeric (or organic) membranes suffer a trade-off between permeance and selectivity. Mixed matrix membranes (MMMs) containing two-dimensional (2D) metal-organic frameworks (MOFs) as fillers are a highly sought approach to redress this trade-off given their enhanced gas permeabilities and selectivities compared to the pure polymeric membrane. These MMMs are increasingly gaining attention by researchers due to their unique properties and wide small- and large-scale gas separation applications. However, straightforward and scalable methods for the synthesis of MOFs nanosheets have thus far been persistently elusive. This study reports the single-phase preparation, and characterization of MMMs with 2D MOFs nanosheets as fillers. The prepared MOF and the polymer matrix form the ‘dense’ MMMs which exhibit increased gas diffusion resistance, and thus improved separation abilities. The single-phase approach was more successful than the bi-phase at synthesizing the MOFs. The influence of sonication power and time on the characteristics and performance of the membranes are examined and discussed. Increasing the sonication power from 50% to 100% reduces the pore size. Additionally, the ultimate effect on the selectivity and permeance of the MMMs with different single gases is reported. Analysis of results with various gas mixers indicates further performance improvements in these MMMs could be achieved by increasing sonication time and tuning suitable membrane thicknesses. Reported results reveal that MMMs are excellent candidates for next-generation gas mixture separations, with potential applications in CO2 capture and storage, hydrogen recovery, alkene recovery from alkanes, and natural gas purification.
ContributorsNkuutu, John (Author) / Mu, Bin (Thesis director) / Shan, Bohan (Committee member) / Chemical Engineering Program (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132536-Thumbnail Image.png
Description
Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’

Human activity produces ambient noise that potentially alters species’ abilities to communicate with each other—among other impacts. Given that birds are known to be sensitive to structural changes in habitat and highly communicative through sound, it is beneficial to understand how changing acoustic ecologies and ambient noise impact birds’ ability to communicate in their respective environments. In this study, mockingbird calls from an urban, desert, and intermediate study site were recorded and analyzed for differences in acoustic properties. Acoustic properties such as frequency and amplitude differed significantly across sites as it was determined that mockingbirds in urban areas increase both the peak frequency and amplitude of their calls in order to communicate. This study identifies what these changes in acoustic properties mean in relation to the survival and conservation of birds and concludes with recommendations for novel research.
ContributorsReynolds, Bailey Susana (Author) / Pearson, David (Thesis director) / Walters, Molina (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132538-Thumbnail Image.png
Description
Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates

Constructed treatment wetlands (CTW) are being increasingly utilized in urbanized areas as a cost-effective and environmentally-friendly method for treating wastewater. CTWs can be especially useful for urban areas in aridland environments because they facilitate the reuse of water during water shortages. In my study, I determined the rates at which the aboveground and belowground emergent macrophytes sequestered nitrogen in a 42 ha aridland CTW in Phoenix, Arizona, USA. To do so, I measured foliar nitrogen content in aboveground and belowground biomass of three plant species groups (Typha latifolia + Typha domingensis, Schoenoplectus acutus + Schoenoplectus tabernaemontani, and Schoenoplectus californicus). Using these data, I calculated aboveground and belowground nitrogen budgets for the three species groups annually from 2011 to 2018.

Aboveground nitrogen content showed a maximum in 2011, decreasing until 2015, increasing again until 2017, and dropping in 2018; belowground nitrogen content showed the opposite temporal trend. Because foliar nitrogen content was assumed to be relatively constant over time, my data suggested that belowground nitrogen content increased between 2011 and 2015 and decreased between 2015 and 2017. Aboveground nitrogen content underwent fluctuations due to fluctuations in aboveground biomass. This occurred due to ‘thatching’, or events of widespread toppling of large macrophyte stands. The ratio of aboveground to belowground biomass can vary widely in the same CTW. My findings suggested that managing senesced aboveground plant material in CTWs may optimize the CTW’s ability to sequester nitrogen. Further research is needed to determine the best management strategies, as well as its possible implications.
ContributorsCrane, Austin Matthew (Author) / Childers, Daniel (Thesis director) / Sanchez, Christopher (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
Circles of Sustainability is a self-evaluation tool designed to build educator capacity in K-12 schools seeking sustainability solutions. Based on the Sustainable Schools Challenge Handbook from Memphis, Tennessee, Circles of Sustainability considers environmental impact and efficiency, a healthy and safe school environment, sustainability and environmental education, and engagement and empowerment

Circles of Sustainability is a self-evaluation tool designed to build educator capacity in K-12 schools seeking sustainability solutions. Based on the Sustainable Schools Challenge Handbook from Memphis, Tennessee, Circles of Sustainability considers environmental impact and efficiency, a healthy and safe school environment, sustainability and environmental education, and engagement and empowerment as four key pillars of whole-school sustainability. Each pillar is composed of elements and rubric items, which are reviewed, totaled, and colored in on the front page of the tool to help educators visualize and evaluate the current state of sustainability at their school. Since its first iteration completed in May 2017, the tool has been used by 300 educators throughout the United States during ASU's Sustainability Teachers' Academy (STA) workshops. Circles of Sustainability is completed as part of an activity called "Evaluating Your Community," where educators complete the tool and then brainstorm sustainability projects and solutions for their school and community. This paper is a review and discussion of the research, informal feedback and formal feedback used to create the second iteration of the tool. A second iteration of the tool was created to make the tool more user-friendly and ensure each pillar, element, and rubric item are based in research. The informal feedback was conducted during STA workshops in Tempe, Arizona; Abingdon, Virginia; Princeton, New Jersey; Chicago, Illinois; Los Angeles, California; Tucson, Arizona; and Charlotte, North Carolina. The formal feedback was conducted using a survey distributed to teachers who participated in the Tucson and Charlotte workshops. Overall, educators have responded positively to the tool, and the second iteration will continue to be used in future STA workshops throughout the United States.
ContributorsColbert, Julia (Author) / Schoon, Michael (Thesis director) / Merritt, Eileen (Committee member) / School of Sustainability (Contributor) / Division of Teacher Preparation (Contributor) / School of Geographical Sciences and Urban Planning (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
Description
This creative project explores how macro-ecological photography can serve as a community engagement tool for the field of biomimicry, meant to provoke interest in the subject. My photos, and the organisms pictured in them, were hand selected for this project to form one cohesive, aesthetic set. The appeal of the

This creative project explores how macro-ecological photography can serve as a community engagement tool for the field of biomimicry, meant to provoke interest in the subject. My photos, and the organisms pictured in them, were hand selected for this project to form one cohesive, aesthetic set. The appeal of the colorful pictures captured the attention of audience members so they felt more inclined to learn about the informational content accompanying the art. Each picture is coupled with a scientific explanation as to how the pictured organism relates to the field of biomimicry, including concrete examples of its application. To maximize exposure of the project, I published my photos through a website and an e-book, and also presented them as a live photography exhibit on campus at Arizona State University.
ContributorsGerber, Haley Dawn (Author) / Jenik, Adriene (Thesis director) / Walters, Molina (Committee member) / Division of Teacher Preparation (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05