Matching Items (4)
Filtering by

Clear all filters

133904-Thumbnail Image.png
Description
Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population

Osteoporosis is a medical condition that leads to decreased bone mineral density, resulting in increased fracture risk.1 Research regarding the relationship between sleep and bone mass is limited and has primarily been studied in elderly adults. While this population is most affected by osteoporosis, adolescents are the most proactive population in terms of prevention. The purpose of this study was to evaluate the relationship between sleep efficiency and serum osteocalcin in college-aged individuals as a means of osteoporosis prevention. Thirty participants ages 18-25 years (22 females, 8 males) at Arizona State University were involved in this cross-sectional study. Data were collected during one week via self-recorded sleep diaries, quantitative ActiWatch, DEXA imaging, and serum blood draws to measure the bone biomarker osteocalcin. Three participants were excluded from the study as outliers. The median (IQR) for osteocalcin measured by ELISA was 11.6 (9.7, 14.5) ng/mL. The average sleep efficiency measured by actigraphy was 88.3% ± 3.0%. Regression models of sleep efficiency and osteocalcin concentration were not statistically significant. While the addition of covariates helped explain more of the variation in serum osteocalcin concentration, the results remained insignificant. There was a trend between osteocalcin and age, suggesting that as age increases, osteocalcin decreases. This was a limited study, and further investigation regarding the relationship between sleep efficiency and osteocalcin is warranted.
ContributorsMarsh, Courtney Nicole (Author) / Whisner, Corrie (Thesis director) / Mahmood, Tara (Committee member) / School of International Letters and Cultures (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
168582-Thumbnail Image.png
Description
Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time

Traditional public health strategies for assessing human behavior, exposure, and activity are considered resource-exhaustive, time-consuming, and expensive, warranting a need for alternative methods to enhance data acquisition and subsequent interventions. This dissertation critically evaluated the use of wastewater-based epidemiology (WBE) as an inclusive and non-invasive tool for conducting near real-time population health assessments. A rigorous literature review was performed to gauge the current landscape of WBE to monitor for biomarkers indicative of diet, as well as exposure to estrogen-mimicking endocrine disrupting (EED) chemicals via route of ingestion. Wastewater-derived measurements of phytoestrogens from August 2017 through July 2019 (n = 156 samples) in a small sewer catchment revealed seasonal patterns, with highest average per capita consumption rates in January through March of each year (2018: 7.0 ± 2.0 mg d-1; 2019: 8.2 ± 2.3 mg d-1) and statistically significant differences (p = 0.01) between fall and winter (3.4 ± 1.2 vs. 6.1 ± 2.9 mg d-1; p ≤ 0.01) and spring and summer (5.6 ± 2.1 vs. 3.4 ± 1.5 mg d-1; p ≤ 0.01). Additional investigations, including a human gut microbial composition analysis of community wastewater, were performed to support a methodological framework for future implementation of WBE to assess population-level dietary behavior. In response to the COVID-19 global pandemic, a high-frequency, high-resolution sample collection approach with public data sharing was implemented throughout the City of Tempe, Arizona, and analyzed for SARS-CoV-2 (E gene) from April 2020 through March 2021 (n = 1,556 samples). Results indicate early warning capability during the first wave (June 2020) compared to newly reported clinical cases (8.5 ± 2.1 days), later transitioning to a slight lagging indicator in December/January 2020-21 (-2.0 ± 1.4 days). A viral hotspot from within a larger catchment area was detected, prompting targeted interventions to successfully mitigate community spread; reinforcing the importance of sample collection within the sewer infrastructure. I conclude that by working in tandem with traditional approaches, WBE can enlighten a comprehensive understanding of population health, with methods and strategies implemented in this work recommended for future expansion to produce timely, actionable data in support of public health.
ContributorsBowes, Devin Ashley (Author) / Halden, Rolf U (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Conroy-Ben, Otakuye (Committee member) / Varsani, Arvind (Committee member) / Whisner, Corrie (Committee member) / Arizona State University (Publisher)
Created2022
154341-Thumbnail Image.png
Description
College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and

College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and body mass index (BMI) is limited among this population. Therefore, the purpose of this study was to assess associations between the gut microbiome, BMI, and dietary intake in a population of healthy college students living in two dorms at Arizona State University (n=90). Cross-sectional analyses were undertaken including 24-hour dietary recalls and anthropometrics (height, weight and BMI). High throughput Bacterial 16S rRNA gene sequencing of fecal samples was performed to quantify the gut microbiome and analyses were performed at phyla and family levels. Within this population, the mean BMI was 24.4 ± 5.3 kg/m2 and mean caloric intake was 1684 ± 947 kcals/day. Bacterial community analysis revealed that there were four predominant phyla and 12 predominant families accounting for 99.3% and 97.1% of overall microbial communities, respectively. Results of this study suggested that a significant association occurred between one principal component (impacted most by 22 microbial genera primarily within Firmicutes) and BMI (R2=0.053, p=0.0301). No significant correlations or group differences were observed when assessing the Firmicutes/Bacteroidetes ratio in relation to BMI or habitual dietary intake. These results provide a basis for gut microbiome research in college populations. Although, findings suggest that groups of microbial genera may be most influential in obesity, further longitudinal research is necessary to more accurately describe these associations over me. Findings from future research may be used to develop interventions to shift the gut microbiome to help moderate or prevent excess weight gain during this important life stage.
ContributorsHotz, Ricci-Lee (Author) / Whisner, Corrie (Thesis advisor) / Bruening, Meredith (Committee member) / Vega-Lopez, Sonia (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2016
157288-Thumbnail Image.png
Description
College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional

College students are a niche of young adults, characterized by abnormal sleeping habits and inactive lifestyles. Many students entering college are as young as 18 years old and graduate by 22 years old, a window of time in which their bones are still accruing mineral. The purpose of this cross-sectional study was to determine whether sleep patterns and physical activity observed in college students (N= 52) 18-25 years old at Arizona State University influenced bone biomarkers, osteocalcin (OC) and N-terminal telopeptide of type 1 collagen (NTX-1) concentrations. Students completed various dietary and health history questionnaires including the International Physical Activity Questionnaire short form. Students wore an actigraphy watch for 7 consecutive nights to record sleep events including total sleep time, sleep onset latency and wake after sleep onset. Total sleep time had a significant, negative correlation with OC (r = -0.298, p-value =0.036) while sleep onset latency had a significant, positive correlation with NTX-1 serum concentration (r = 0.293, p-value = 0.037). Despite correlational findings, only sleep percent was found to be significant (beta coefficient = 0.271 p-value = 0.788) among all the sleep components assessed, after adjusting for gender, race, BMI and calcium intake in multivariate regression models. Physical activity alone was not associated with either bone biomarker. Physical activity*sleep onset latency interactions were significantly correlated with osteocalcin (r = 0.308, p-value =0.006) and NTX-1 (r = 0.286, p-value = 0.042) serum concentrations. Sleep percent*physical activity interactions were significantly correlated with osteocalcin (r = 0.280, p-value = 0.049) but not with NTX-1 serum concentrations. Interaction effects were no longer significant after adjusting for covariates in the regression models. While sleep percent was a significant component in the regression model for NTX-1, it was not clinically significant. Overall, sleep patterns and physical activity did not explain OC and NTX-1 serum concentrations in college students 18-25 years old. Future studies may need to consider objective physical activity devices including accelerometers to measure activity levels. At this time, college students should review sleep and physical activity recommendations to ensure optimal healthy habits are practiced.
ContributorsMahmood, Tara Nabil (Author) / Whisner, Corrie (Thesis advisor) / Dickinson, Jared (Committee member) / Petrov, Megan (Committee member) / Adams, Marc (Committee member) / Arizona State University (Publisher)
Created2019