Matching Items (3)
Filtering by

Clear all filters

Description
The purpose of this study was to assess usage and satisfaction of a large university recreation fitness center. Data from 471 respondents was collected during Spring 2018. Although users were satisfied overall, we obtained useful information to guide center administration towards improved usage rates and experiences for users of the

The purpose of this study was to assess usage and satisfaction of a large university recreation fitness center. Data from 471 respondents was collected during Spring 2018. Although users were satisfied overall, we obtained useful information to guide center administration towards improved usage rates and experiences for users of the center.
ContributorsOlson, Dane (Author) / Berger, Christopher (Thesis director) / Stufken, John (Committee member) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
193023-Thumbnail Image.png
Description
Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) is projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates

Alzheimer's disease (AD) and Alzheimer's Related Dementias (ADRD) is projected to affect 50 million people globally in the coming decades. Clinical research suggests that Mild Cognitive Impairment (MCI), a precursor to dementia, offers a critical window for lifestyle interventions to delay or prevent the progression of AD/ADRD. Previous research indicates that lifestyle changes, including increased physical exercise, reduced caloric intake, and mentally stimulating exercises, can reduce the risk of MCI. Early detection of MCI is challenging due to subtle and often unnoticed cognitive decline, traditionally monitored through infrequent clinical tests. As part of this research, the Smart Driving System was proposed, a novel, unobtrusive, and economical technology to detect early stages of neurodegenerative diseases. This system, leveraging a multi-modal biosensing array (MMS) and AI algorithms, assesses daily driving behavior, offering insights into a driver's cognitive function. The ultimate goal is to develop the Smart Driving Device and App, integrating it into vehicles, and validating its effectiveness in detecting MCI through comprehensive pilot studies. The Smart Driving System represents a breakthrough in AD/ADRD management, promising significant improvements in early detection and offering a scalable, cost-effective solution for monitoring cognitive health in real-world settings.
ContributorsSerhan, Peter (Author) / Forzani, Erica (Thesis advisor) / Wu, Teresa (Committee member) / Hihath, Joshua (Committee member) / Arizona State University (Publisher)
Created2024
157051-Thumbnail Image.png
Description

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT;

This study investigated the effect of environmental heat stress on physiological and performance measures during a ~4 mi time trial (TT) mountain hike in the Phoenix metropolitan area. Participants (n = 12; 7M/5F; age 21.6 ± 2.47 [SD]) climbed ‘A’ mountain (~1 mi) four times on a hot day (HOT; wet bulb globe temperature [WBGT] = 31.6°C) and again on a moderate day (MOD; WBGT = 19.0°C). Physiological and performance measures were made before and throughout the course of each hike. Mean pre-hike hydration status (urine specific gravity [USG]) indicated that participants began both HOT and MOD trials in a euhydrated state (1.016 ± 0.010 and 1.010 ± 0.008, respectively) and means did not differ significantly between trials (p = .085). Time trial performance was impaired by -11% (11.1 minutes) in the HOT trial (105 ± 21.7 min), compared to MOD (93.9 ± 13.1 min) (p = .013). Peak core temperatures were significantly higher in HOT (38.5 ± 0.36°C) versus MOD (38.0 ± 0.30°C) with progressively increasing differences between trials over time (p < .001). Peak ratings of perceived exertion were significantly higher in HOT (14.2 ± 2.38) compared to MOD (11.9 ± 2.02) (p = .007). Relative intensity (percent of age-predicted maximal heart rate [HR]), estimated absolute intensity (metabolic equivalents [METs]), and estimated energy expenditure (MET-h) were all increased in HOT, but not significantly so. The HOT condition reduced predicted maximal aerobic capacity (CRFp) by 6% (p = .026). Sweat rates differed significantly between HOT (1.38 ± 0.53 L/h) and MOD (0.84 ± 0.27 L/h) (p = .01). Percent body mass loss (PBML) did not differ significantly between HOT (1.06 ± 0.95%) and MOD (0.98 ± 0.84%) (p = .869). All repeated measures variables showed significant between-subjects effects (p < .05), indicating individual differences in response to test conditions. Heat stress was shown to negatively affect physiological and performance measures in recreational mountain hikers. However, considerable variation exists between individuals, and the degree of physiological and performance impairment is probably due, in part, to differences in aerobic fitness and acclimatization status rather than pre- or during-performance hydration status.

ContributorsLinsell, Joshua (Author) / Wardenaar, Floris (Thesis advisor) / Berger, Christopher (Committee member) / Forzani, Erica (Committee member) / Hondula, David M. (Committee member) / Arizona State University (Publisher)
Created2019