Matching Items (17)
152079-Thumbnail Image.png
Description
Many different levels of government, organizations, and programs actively shape the future of energy in Arizona, a state that lacks a comprehensive energy plan. Disparate actions by multiple actors may slow the energy policy process rather than expedite it. The absence of a state energy policy or plan raises questions

Many different levels of government, organizations, and programs actively shape the future of energy in Arizona, a state that lacks a comprehensive energy plan. Disparate actions by multiple actors may slow the energy policy process rather than expedite it. The absence of a state energy policy or plan raises questions about how multiple actors and ideas engage with state energy policy development and whether the absence of a comprehensive state plan can be understood. Improving how policy development is conceptualized and giving more focused attention to the mechanisms by which interested parties become involved in shaping Arizona energy policy. To explore these questions, I examine the future energy efficiency. Initially, public engagement mechanisms were examined for their role in policy creation from a theoretical perspective. Next a prominent public engagement forum that was dedicated to the topic of the Arizona's energy future was examined, mapping its process and conclusions onto a policy process model. The first part of this thesis involves an experimental expert consultation panel which was convened to amplify and refine the results of a public forum. The second part utilizes an online follow up survey to complete unfinished ideas from the focus group. The experiment flowed from a hypothesis that formal expert discussion on energy efficiency policies, guided by the recommendations put forth by the public engagement forum on energy in Arizona, would result in an increase in relevance while providing a forum for interdisciplinary collaboration that is atypical in today's energy discussions. This experiment was designed and evaluated utilizing a public engagement framework that incorporated theoretical and empirical elements. Specifically, I adapted elements of three methods of public and expert engagement used in policy development to create a consultation process that was contextualized to energy efficiency stakeholders in Arizona and their unique constraints. The goal of the consultation process was to refine preferences about policy options by expert stakeholders into actionable goals that could achieve advancement on policy implementation. As a corollary goal, the research set out to define implementation barriers, refine policy ideas, and operationalize Arizona-centric goals for the future of energy efficiency.
ContributorsBryck, Drew (Author) / Graffy, Elisabeth A. (Thesis advisor) / Dalrymple, Michael (Committee member) / Miller, Clark (Committee member) / Arizona State University (Publisher)
Created2013
155908-Thumbnail Image.png
Description
User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is

User satisfaction is pivotal to the success of mobile applications. At the same time, it is imperative to maximize the energy efficiency of the mobile device to ensure optimal usage of the limited energy source available to mobile devices while maintaining the necessary levels of user satisfaction. However, this is complicated due to user interactions, numerous shared resources, and network conditions that produce substantial uncertainty to the mobile device's performance and power characteristics. In this dissertation, a new approach is presented to characterize and control mobile devices that accurately models these uncertainties. The proposed modeling framework is a completely data-driven approach to predicting power and performance. The approach makes no assumptions on the distributions of the underlying sources of uncertainty and is capable of predicting power and performance with over 93% accuracy.

Using this data-driven prediction framework, a closed-loop solution to the DEM problem is derived to maximize the energy efficiency of the mobile device subject to various thermal, reliability and deadline constraints. The design of the controller imposes minimal operational overhead and is able to tune the performance and power prediction models to changing system conditions. The proposed controller is implemented on a real mobile platform, the Google Pixel smartphone, and demonstrates a 19% improvement in energy efficiency over the standard frequency governor implemented on all Android devices.
ContributorsGaudette, Benjamin David (Author) / Vrudhula, Sarma (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Fainekos, Georgios (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2017
158765-Thumbnail Image.png
Description
Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by the residential sector, mostly in detached villas. This study analyzes

Due to extreme summer temperatures that regularly reach 122°F (50°C), cooling energy requirements have been responsible for 70% of peak demand and 45% of total electricity consumption in Kuwait. It is estimated that 50%-60% of electric power is consumed by the residential sector, mostly in detached villas. This study analyzes the potential impact of energy efficiency measures (EEM) and renewable energy (RE) measures on the electric energy requirements of an existing villa built in 2004. Using architectural plans, interview data, and the eQUEST building energy simulation tool, a building energy model (BEM) was developed for a villa calibrated with hourly energy use data for the year 2014. Although the modeled villa consumed less energy than an average Kuwaiti villa of the same size, 26% energy reductions were still possible under compliance with 2018 building codes. Compliance with 2010 and 2014 building codes, however, would have increased energy use by 19% and 3% respectively. Furthermore, survey data of 150 villas was used to generate statistics on rooftop solar area availability. Accordingly, it was found that 78% of the survey sample’s average total rooftop area was not suitable for rooftop solar systems due to shading and other obstacles. The integration of a solar canopy circumvents this issue and also functions as a shading device for outdoor activities and as a protective cover for AC units and water tanks. Combining the highest modeled EEMs and RE measures on the villa, the energy use intensity (EUI) would be reduced to 15 kWh/m2/year from a baseline value of 127 kWh/m2/year, close to net zero. Finally, it was determined that EEMs were able to reduce the entire demand profile whereas RE measures were most effective at reducing demand around mid-day hours. In future studies, more effort should be spent on collecting hourly data from multiple villas to assist in the development of a detailed hourly bottom-up residential energy modeling methodology.
ContributorsAlyakoob, Ali (Author) / Reddy, Agami T (Thesis advisor) / Addison, Marlin (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2020
158882-Thumbnail Image.png
Description
The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of

The relationship between settler-colonial governments and Indigenous nations has been a contentious one, filled with disingenuity and fueled by the abuse of power dynamics. Specifically, colonial governments have repeatedly used power in mapping, cultural Othering, resource control, and research methodologies to assimilate, acculturate, or otherwise dominate every aspect of Indigenous lives. A relatively recent pushback from Indigenous peoples led to the slow reclamation of sovereignty, including in the United States. Revamped federal Indian programs allegedly promote tribal self-determination, yet they paradoxically serve a vast quantity of cultures through singular blanket programs that are blind to the cultural component of Indigenous identity - the centerfold of colonial aggression for centuries. The U.S. Department of Housing and Urban Development’s Office of Public and Indian Housing is no exception, using a Western framework to provide generic services that neither serve cultural needs nor are tailored to the specific environment traditional homes were historically and epistemologically suited for. This research analyzes the successes of new programs as well as the failures of the federal government to conduct responsible research and promote the authentic self-determination of tribes in terms of housing and urban development. It also considers the successes and failures of tribes to effectively engage in program reformation negotiation, community planning, and accountability measures to ensure their communities are served with enough culturally-appropriate, sustainable housing without mistrusting their own housing entities. Solutions for revising this service gap are proposed, adhering to a framework that centers diverse cultural values, community input, and functional design to increase each tribe’s implementation of self-determination in HUD housing programs.
ContributorsDeVault, Kayla (Author) / Martinez, David (Thesis advisor) / Hale, Michelle (Thesis advisor) / Phelan, Patrick (Committee member) / Dalla Costa, Wanda (Committee member) / Arizona State University (Publisher)
Created2020
Description

This study examines the creation of a sustainability toolkit that can be implemented in many communities, beginning with Johnson City, Tennessee. This project began in 2019 and will continue to grow indefinitely. For this project, a toolkit that will allow the public to have access to the tools and information

This study examines the creation of a sustainability toolkit that can be implemented in many communities, beginning with Johnson City, Tennessee. This project began in 2019 and will continue to grow indefinitely. For this project, a toolkit that will allow the public to have access to the tools and information they need in order to make their homes more energy-efficient will be created. It will be stocked in the local library in Johnson City Tennessee for free use to the public, as long as they have a library card, they can check out the toolkits. The toolkits will be used by the public, then returned to the library so that they can be restocked and checked out again. This study looks at the market, business and organizational research and the infrastructure of the project. Methods of research included looking at how the need for a change came about, who will benefit, existing similar programs and how they will be used in conjunction with this project, current organizational structures attached to the project, current team infrastructure and what resources are needed to fill the voids. Findings include what financial resources will be required and how they will be acquired, as well as resources that are currently available for this project and what is still needed in order for this project to be successful. As a result of this project, at least two libraries in the Johnson City area will be stocked with several energy toolkits for free and a partnership for future project expansion will have been established. This study looks at the process and what was learned during the implementation of the project.

ContributorsMassick, Emma (Writer of accompanying material)
Created2020-05-18
164645-Thumbnail Image.png
Description
Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over

Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over the last few years with the impact that covid had on the global supply chain. Prices of materials and labor have never been higher, and with this, the price of energy continues to increase. Therefore, it is important to explore methods to make homes more energy-efficient without the price tag. In addition to benefitting the homeowner by decreasing the cost of their monthly utility bills, making homes more energy efficient will aid in the overall goal of reducing carbon emissions.
ContributorsFiller, Peyton (Author) / Phelan, Patrick (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05
190810-Thumbnail Image.png
Description
Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly

Failures in the cold chain, the system of refrigerated storage and transport that provides fresh produce or other essentials to be maintained at desired temperatures and environmental conditions, lead to food and energy waste. The mini container (MC) concept is introduced as an alternative to conventional refrigerated trucks (“reefers”), particularly for small growers. The energy consumption and corresponding GHG emissions for transporting tomatoes in two cities representing contrasting climates is analyzed for conventional reefers and the proposed mini containers. The results show that, for partial reefer loads, using the MCs reduces energy consumption and GHG emissions. The transient behavior of the vapor compression refrigeration cycle is analyzed by considering each component as a “lumped” system, and the resulting sub-models are solved using the Runge Kutta 4th-order method in a MATLAB code at hot and cold ambient temperatures. The time needed to reach steady state temperatures and the temperature values are determined. The maximum required compressor work in the transient phase and at steady state are computed, and as expected, as the ambient temperature increases, both values increase. Finally, the average coefficient of performance (COP) is determined for varying heat transfer coefficient values for the condenser and for the evaporator. The results show that the average COP increases as heat transfer coefficient values for the condenser and the evaporator increase. Starting the system from rest has an adverse effect on the COP due to the higher compressor load needed to change the temperature of the condenser and the evaporator. Finally, the impact on COP is analyzed by redirecting a fraction of the cold exhaust air to provide supplemental cooling of the condenser. It is noted that cooling the condenser improves the system's performance better than cooling the fresh air at 0% of returned air to the system.To sum up, the dissertation shows that the comparison between the conventional reefer and the MC illustrates the promising advantages of the MC, then a transient analysis is developed for deeply understanding the behaviors of the system component parameters, which leads finally to improvements in the system to enhance its performance.
ContributorsSyam, Mahmmoud Muhammed (Author) / Phelan, Patrick (Thesis advisor) / Villalobos, Rene (Thesis advisor) / Huang, Huei-Ping (Committee member) / Bocanegra, Luis (Committee member) / Al Omari, Salah (Committee member) / Arizona State University (Publisher)
Created2023