Matching Items (2)
Filtering by

Clear all filters

150151-Thumbnail Image.png
Description
In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions

In the U.S., high-speed passenger rail has recently become an active political topic, with multiple corridors currently being considered through federal and state level initiatives. One frequently cited benefit of high-speed rail proposals is that they offer a transition to a more sustainable transportation system with reduced greenhouse gas emissions and fossil energy consumption. This study investigates the feasibility of high-speed rail development as a long-term greenhouse gas emission mitigation strategy while considering major uncertainties in the technological and operational characteristics of intercity travel. First, I develop a general model for evaluating the emissions impact of intercity travel modes. This model incorporates aspects of life-cycle assessment and technological forecasting. The model is then used to compare future scenarios of energy and greenhouse gas emissions associated with the development of high-speed rail and other intercity travel technologies. Three specific rail corridors are evaluated and policy guidelines are developed regarding the emissions impacts of these investments. The results suggest prioritizing high-speed rail investments on short, dense corridors with fewer stops. Likewise, less emphasis should be placed on larger investments that require long construction times due to risks associated with payback of embedded emissions as competing technology improves.
ContributorsBurgess, Edward (Author) / Williams, Eric (Thesis advisor) / Fink, Jonathan (Thesis advisor) / Yaro, Robert (Committee member) / Arizona State University (Publisher)
Created2011
154738-Thumbnail Image.png
Description
Residential air conditioning systems represent a critical load for many electric

utilities, especially for those who serve customers in hot climates. In hot and dry

climates, in particular, the cooling load is usually relatively low during night hours and

early mornings and hits its maximum in the late afternoon. If electric loads could

Residential air conditioning systems represent a critical load for many electric

utilities, especially for those who serve customers in hot climates. In hot and dry

climates, in particular, the cooling load is usually relatively low during night hours and

early mornings and hits its maximum in the late afternoon. If electric loads could be

shifted from peak hours (e.g., late afternoon) to off-peak hours (e.g., late morning), not

only would building operation costs decrease, the need to run peaker plants, which

typically use more fossil fuels than non-peaker plants, would also decrease. Thus, shifting

electricity consumption from peak to off-peak hours promotes economic and

environmental savings. Operational and technological strategies can reduce the load

during peak hours by shifting cooling operation from on-peak hours to off-peak hours.

Although operational peak load shifting strategies such as precooling may require

mechanical cooling (e.g., in climates like Phoenix, Arizona), this cooling is less

expensive than on-peak cooling due to demand charges or time-based price plans.

Precooling is an operational shift, rather than a technological one, and is thus widely

accessible to utilities’ customer base. This dissertation compares the effects of different

precooling strategies in a Phoenix-based utility’s residential customer market and

assesses the impact of technological enhancements (e.g., energy efficiency measures and

solar photovoltaic system) on the performance of precooling. This dissertation focuses on

the operational and technological peak load shifting strategies that are feasible for

residential buildings and discusses the advantages of each in terms of peak energy

savings and residential electricity cost savings.
ContributorsArababadi, Reza (Author) / Parrish, Kristen (Thesis advisor) / Reddy, T A (Committee member) / Jackson, Roderick K (Committee member) / Arizona State University (Publisher)
Created2016