Matching Items (2)
Filtering by

Clear all filters

150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
149360-Thumbnail Image.png
Description
Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over

Cloud computing systems fundamentally provide access to large pools of data and computational resources through a variety of interfaces similar in spirit to existing grid and HPC resource management and programming systems. These types of systems offer a new programming target for scalable application developers and have gained popularity over the past few years. However, most cloud computing systems in operation today are proprietary and rely upon infrastructure that is invisible to the research community, or are not explicitly designed to be instrumented and modified by systems researchers. In this research, Xen Server Management API is employed to build a framework for cloud computing that implements what is commonly referred to as Infrastructure as a Service (IaaS); systems that give users the ability to run and control entire virtual machine instances deployed across a variety physical resources. The goal of this research is to develop a cloud based resource and service sharing platform for Computer network security education a.k.a Virtual Lab.
ContributorsKadne, Aniruddha (Author) / Huang, Dijiang (Thesis advisor) / Tsai, Wei-Tek (Committee member) / Ahn, Gail-Joon (Committee member) / Arizona State University (Publisher)
Created2010