Matching Items (9)
Filtering by

Clear all filters

151605-Thumbnail Image.png
Description
In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our

In most social networking websites, users are allowed to perform interactive activities. One of the fundamental features that these sites provide is to connecting with users of their kind. On one hand, this activity makes online connections visible and tangible; on the other hand, it enables the exploration of our connections and the expansion of our social networks easier. The aggregation of people who share common interests forms social groups, which are fundamental parts of our social lives. Social behavioral analysis at a group level is an active research area and attracts many interests from the industry. Challenges of my work mainly arise from the scale and complexity of user generated behavioral data. The multiple types of interactions, highly dynamic nature of social networking and the volatile user behavior suggest that these data are complex and big in general. Effective and efficient approaches are required to analyze and interpret such data. My work provide effective channels to help connect the like-minded and, furthermore, understand user behavior at a group level. The contributions of this dissertation are in threefold: (1) proposing novel representation of collective tagging knowledge via tag networks; (2) proposing the new information spreader identification problem in egocentric soical networks; (3) defining group profiling as a systematic approach to understanding social groups. In sum, the research proposes novel concepts and approaches for connecting the like-minded, enables the understanding of user groups, and exposes interesting research opportunities.
ContributorsWang, Xufei (Author) / Liu, Huan (Thesis advisor) / Kambhampati, Subbarao (Committee member) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
152337-Thumbnail Image.png
Description
In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints.

In contemporary society, sustainability and public well-being have been pressing challenges. Some of the important questions are:how can sustainable practices, such as reducing carbon emission, be encouraged? , How can a healthy lifestyle be maintained?Even though individuals are interested, they are unable to adopt these behaviors due to resource constraints. Developing a framework to enable cooperative behavior adoption and to sustain it for a long period of time is a major challenge. As a part of developing this framework, I am focusing on methods to understand behavior diffusion over time. Facilitating behavior diffusion with resource constraints in a large population is qualitatively different from promoting cooperation in small groups. Previous work in social sciences has derived conditions for sustainable cooperative behavior in small homogeneous groups. However, how groups of individuals having resource constraint co-operate over extended periods of time is not well understood, and is the focus of my thesis. I develop models to analyze behavior diffusion over time through the lens of epidemic models with the condition that individuals have resource constraint. I introduce an epidemic model SVRS ( Susceptible-Volatile-Recovered-Susceptible) to accommodate multiple behavior adoption. I investigate the longitudinal effects of behavior diffusion by varying different properties of an individual such as resources,threshold and cost of behavior adoption. I also consider how behavior adoption of an individual varies with her knowledge of global adoption. I evaluate my models on several synthetic topologies like complete regular graph, preferential attachment and small-world and make some interesting observations. Periodic injection of early adopters can help in boosting the spread of behaviors and sustain it for a longer period of time. Also, behavior propagation for the classical epidemic model SIRS (Susceptible-Infected-Recovered-Susceptible) does not continue for an infinite period of time as per conventional wisdom. One interesting future direction is to investigate how behavior adoption is affected when number of individuals in a network changes. The affects on behavior adoption when availability of behavior changes with time can also be examined.
ContributorsDey, Anindita (Author) / Sundaram, Hari (Thesis advisor) / Turaga, Pavan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
153335-Thumbnail Image.png
Description
With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands.

With the increasing user demand for low latency, elastic provisioning of computing resources coupled with ubiquitous and on-demand access to real-time data, cloud computing has emerged as a popular computing paradigm to meet growing user demands. However, with the introduction and rising use of wear- able technology and evolving uses of smart-phones, the concept of Internet of Things (IoT) has become a prevailing notion in the currently growing technology industry. Cisco Inc. has projected a data creation of approximately 403 Zetabytes (ZB) by 2018. The combination of bringing benign devices and connecting them to the web has resulted in exploding service and data aggregation requirements, thus requiring a new and innovative computing platform. This platform should have the capability to provide robust real-time data analytics and resource provisioning to clients, such as IoT users, on-demand. Such a computation model would need to function at the edge-of-the-network, forming a bridge between the large cloud data centers and the distributed connected devices.

This research expands on the notion of bringing computational power to the edge- of-the-network, and then integrating it with the cloud computing paradigm whilst providing services to diverse IoT-based applications. This expansion is achieved through the establishment of a new computing model that serves as a platform for IoT-based devices to communicate with services in real-time. We name this paradigm as Gateway-Oriented Reconfigurable Ecosystem (GORE) computing. Finally, this thesis proposes and discusses the development of a policy management framework for accommodating our proposed computational paradigm. The policy framework is designed to serve both the hosted applications and the GORE paradigm by enabling them to function more efficiently. The goal of the framework is to ensure uninterrupted communication and service delivery between users and their applications.
ContributorsDsouza, Clinton (Author) / Ahn, Gail-Joon (Thesis advisor) / Doupe, Adam (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2015
153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale,

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
ContributorsHu, Yuheng (Author) / Kambhampati, Subbarao (Thesis advisor) / Horvitz, Eric (Committee member) / Krumm, John (Committee member) / Liu, Huan (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
149714-Thumbnail Image.png
Description
This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the communication process, and the channel i.e. the media via which communication takes place. Communication dynamics have been of interest to researchers from multi-faceted domains over the past several decades. However, today we are faced with several modern capabilities encompassing a host of social media websites. These sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information, our modes of social engagement, and mechanisms of how the media characteristics impact our interactional behavior. The outcomes of this research are manifold. We present our contributions in three parts, corresponding to the three key organizing ideas. First, we have observed that user context is key to characterizing communication between a pair of individuals. However interestingly, the probability of future communication seems to be more sensitive to the context compared to the delay, which appears to be rather habitual. Further, we observe that diffusion of social actions in a network can be indicative of future information cascades; that might be attributed to social influence or homophily depending on the nature of the social action. Second, we have observed that different modes of social engagement lead to evolution of groups that have considerable predictive capability in characterizing external-world temporal occurrences, such as stock market dynamics as well as collective political sentiments. Finally, characterization of communication on rich media sites have shown that conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Based on all these outcomes, we believe that this research can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.
ContributorsDe Choudhury, Munmun (Author) / Sundaram, Hari (Thesis advisor) / Candan, K. Selcuk (Committee member) / Liu, Huan (Committee member) / Watts, Duncan J. (Committee member) / Seligmann, Doree D. (Committee member) / Arizona State University (Publisher)
Created2011
157057-Thumbnail Image.png
Description
The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information.

The pervasive use of social media gives it a crucial role in helping the public perceive reliable information. Meanwhile, the openness and timeliness of social networking sites also allow for the rapid creation and dissemination of misinformation. It becomes increasingly difficult for online users to find accurate and trustworthy information. As witnessed in recent incidents of misinformation, it escalates quickly and can impact social media users with undesirable consequences and wreak havoc instantaneously. Different from some existing research in psychology and social sciences about misinformation, social media platforms pose unprecedented challenges for misinformation detection. First, intentional spreaders of misinformation will actively disguise themselves. Second, content of misinformation may be manipulated to avoid being detected, while abundant contextual information may play a vital role in detecting it. Third, not only accuracy, earliness of a detection method is also important in containing misinformation from being viral. Fourth, social media platforms have been used as a fundamental data source for various disciplines, and these research may have been conducted in the presence of misinformation. To tackle the challenges, we focus on developing machine learning algorithms that are robust to adversarial manipulation and data scarcity.

The main objective of this dissertation is to provide a systematic study of misinformation detection in social media. To tackle the challenges of adversarial attacks, I propose adaptive detection algorithms to deal with the active manipulations of misinformation spreaders via content and networks. To facilitate content-based approaches, I analyze the contextual data of misinformation and propose to incorporate the specific contextual patterns of misinformation into a principled detection framework. Considering its rapidly growing nature, I study how misinformation can be detected at an early stage. In particular, I focus on the challenge of data scarcity and propose a novel framework to enable historical data to be utilized for emerging incidents that are seemingly irrelevant. With misinformation being viral, applications that rely on social media data face the challenge of corrupted data. To this end, I present robust statistical relational learning and personalization algorithms to minimize the negative effect of misinformation.
ContributorsWu, Liang (Author) / Liu, Huan (Thesis advisor) / Tong, Hanghang (Committee member) / Doupe, Adam (Committee member) / Davison, Brian D. (Committee member) / Arizona State University (Publisher)
Created2019
154606-Thumbnail Image.png
Description
Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given the ease of access and availability of the systems, it

Data protection has long been a point of contention and a vastly researched field. With the advent of technology and advances in Internet technologies, securing data has become much more challenging these days. Cloud services have become very popular. Given the ease of access and availability of the systems, it is not easy to not use cloud to store data. This however, pose a significant risk to data security as more of your data is available to a third party. Given the easy transmission and almost infinite storage of data, securing one's sensitive information has become a major challenge.

Cloud service providers may not be trusted completely with your data. It is not very uncommon to snoop over the data for finding interesting patterns to generate ad revenue or divulge your information to a third party, e.g. government and law enforcing agencies. For enterprises who use cloud service, it pose a risk for their intellectual property and business secrets. With more and more employees using cloud for their day to day work, business now face a risk of losing or leaking out information.

In this thesis, I have focused on ways to protect data and information over cloud- a third party not authorized to use your data, all this while still utilizing cloud services for transfer and availability of data. This research proposes an alternative to an on-premise secure infrastructure giving exibility to user for protecting the data and control over it. The project uses cryptography to protect data and create a secure architecture for secret key migration in order to decrypt the data securely for the intended recipient. It utilizes Intel's technology which gives it an added advantage over other existing solutions.
ContributorsSrivastava, Abhijeet (Author) / Ahn, Gail-Joon (Thesis advisor) / Zhao, Ziming (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2016
149464-Thumbnail Image.png
Description
Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual

Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's social network. Determining the "social value" of one's contacts is a valuable outcome of this research. The algorithms we developed were tested on Twitter, which is an extremely popular social network. Twitter was chosen due to its popularity and a majority of the communications artifacts on Twitter is publically available. In this work, the social network of a user refers to the "following relationship" social network. Our algorithm is not specific to Twitter, and is applicable to other social networks, where the network topology and communications are accessible. My approaches are as follows. For a user interested in using the system, I first determine the immediate social network of the user as well as the social contacts for each person in this network. Afterwards, I establish and extend the social network for each user. For each member of the social network, their tweet data are analyzed and represented by using a word distribution. To accomplish this, I use WordNet, a popular lexical database, to determine semantic similarity between two words. My mechanism of search combines both communication distance between two users and social relationships to determine the search results. Additionally, I developed a search interface, where a user can interactively query the system. I conducted preliminary user study to evaluate the quality and utility of my method and system against several baseline methods, including the default Twitter search. The experimental results from the user study indicate that my method is able to find relevant people and identify valuable contacts in one's social circle based on the query. The proposed system outperforms baseline methods in terms of standard information retrieval metrics.
ContributorsXu, Ke (Author) / Sundaram, Hari (Thesis advisor) / Ye, Jieping (Committee member) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010