Matching Items (9)
Filtering by

Clear all filters

152500-Thumbnail Image.png
Description
As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network

As networks are playing an increasingly prominent role in different aspects of our lives, there is a growing awareness that improving their performance is of significant importance. In order to enhance performance of networks, it is essential that scarce networking resources be allocated smartly to match the continuously changing network environment. This dissertation focuses on two different kinds of networks - communication and social, and studies resource allocation problems in these networks. The study on communication networks is further divided into different networking technologies - wired and wireless, optical and mobile, airborne and terrestrial. Since nodes in an airborne network (AN) are heterogeneous and mobile, the design of a reliable and robust AN is highly complex. The dissertation studies connectivity and fault-tolerance issues in ANs and proposes algorithms to compute the critical transmission range in fault free, faulty and delay tolerant scenarios. Just as in the case of ANs, power optimization and fault tolerance are important issues in wireless sensor networks (WSN). In a WSN, a tree structure is often used to deliver sensor data to a sink node. In a tree, failure of a node may disconnect the tree. The dissertation investigates the problem of enhancing the fault tolerance capability of data gathering trees in WSN. The advent of OFDM technology provides an opportunity for efficient resource utilization in optical networks and also introduces a set of novel problems, such as routing and spectrum allocation (RSA) problem. This dissertation proves that RSA problem is NP-complete even when the network topology is a chain, and proposes approximation algorithms. In the domain of social networks, the focus of this dissertation is study of influence propagation in presence of active adversaries. In a social network multiple vendors may attempt to influence the nodes in a competitive fashion. This dissertation investigates the scenario where the first vendor has already chosen a set of nodes and the second vendor, with the knowledge of the choice of the first, attempts to identify a smallest set of nodes so that after the influence propagation, the second vendor's market share is larger than the first.
ContributorsShirazipourazad, Shahrzad (Author) / Sen, Arunabha (Committee member) / Xue, Guoliang (Committee member) / Richa, Andrea (Committee member) / Saripalli, Srikanth (Committee member) / Arizona State University (Publisher)
Created2014
153478-Thumbnail Image.png
Description
US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public

US Senate is the venue of political debates where the federal bills are formed and voted. Senators show their support/opposition along the bills with their votes. This information makes it possible to extract the polarity of the senators. Similarly, blogosphere plays an increasingly important role as a forum for public debate. Authors display sentiment toward issues, organizations or people using a natural language.

In this research, given a mixed set of senators/blogs debating on a set of political issues from opposing camps, I use signed bipartite graphs for modeling debates, and I propose an algorithm for partitioning both the opinion holders (senators or blogs) and the issues (bills or topics) comprising the debate into binary opposing camps. Simultaneously, my algorithm scales the entities on a univariate scale. Using this scale, a researcher can identify moderate and extreme senators/blogs within each camp, and polarizing versus unifying issues. Through performance evaluations I show that my proposed algorithm provides an effective solution to the problem, and performs much better than existing baseline algorithms adapted to solve this new problem. In my experiments, I used both real data from political blogosphere and US Congress records, as well as synthetic data which were obtained by varying polarization and degree distribution of the vertices of the graph to show the robustness of my algorithm.

I also applied my algorithm on all the terms of the US Senate to the date for longitudinal analysis and developed a web based interactive user interface www.PartisanScale.com to visualize the analysis.

US politics is most often polarized with respect to the left/right alignment of the entities. However, certain issues do not reflect the polarization due to political parties, but observe a split correlating to the demographics of the senators, or simply receive consensus. I propose a hierarchical clustering algorithm that identifies groups of bills that share the same polarization characteristics. I developed a web based interactive user interface www.ControversyAnalysis.com to visualize the clusters while providing a synopsis through distribution charts, word clouds, and heat maps.
ContributorsGokalp, Sedat (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2015
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
150524-Thumbnail Image.png
Description
Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC is too slow for any meaningful design space exploration. One

Network-on-Chip (NoC) architectures have emerged as the solution to the on-chip communication challenges of multi-core embedded processor architectures. Design space exploration and performance evaluation of a NoC design requires fast simulation infrastructure. Simulation of register transfer level model of NoC is too slow for any meaningful design space exploration. One of the solutions to reduce the speed of simulation is to increase the level of abstraction. SystemC TLM2.0 provides the capability to model hardware design at higher levels of abstraction with trade-off of simulation speed and accuracy. In this thesis, SystemC TLM2.0 models of NoC routers are developed at three levels of abstraction namely loosely-timed, approximately-timed, and cycle accurate. Simulation speed and accuracy of these three models are evaluated by a case study of a 4x4 mesh NoC.
ContributorsArlagadda Narasimharaju, Jyothi Swaroop (Author) / Chatha, Karamvir S (Thesis advisor) / Sen, Arunabha (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2012
156735-Thumbnail Image.png
Description
The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture

The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed.

Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks.
ContributorsWang, Suhang (Author) / Liu, Huan (Thesis advisor) / Aggarwal, Charu (Committee member) / Sen, Arunabha (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
154790-Thumbnail Image.png
Description
Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This thesis examines the performance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly.

Predicting when an individual will adopt a new behavior is an important problem in application domains such as marketing and public health. This thesis examines the performance of a wide variety of social network based measurements proposed in the literature - which have not been previously compared directly. This research studies the probability of an individual becoming influenced based on measurements derived from neighborhood (i.e. number of influencers, personal network exposure), structural diversity, locality, temporal measures, cascade measures, and metadata. It also examines the ability to predict influence based on choice of the classifier and how the ratio of positive to negative samples in both training and testing affect prediction results - further enabling practical use of these concepts for social influence applications.
ContributorsNanda Kumar, Nikhil (Author) / Shakarian, Paulo (Thesis advisor) / Sen, Arunabha (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2016
154864-Thumbnail Image.png
Description
Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users.

Social media has become popular in the past decade. Facebook for example has 1.59 billion active users monthly. With such massive social networks generating lot of data, everyone is constantly looking for ways of leveraging the knowledge from social networks to make their systems more personalized to their end users. And with rapid increase in the usage of mobile phones and wearables, social media data is being tied to spatial networks. This research document proposes an efficient technique that answers socially k-Nearest Neighbors with Spatial Range Filter. The proposed approach performs a joint search on both the social and spatial domains which radically improves the performance compared to straight forward solutions. The research document proposes a novel index that combines social and spatial indexes. In other words, graph data is stored in an organized manner to filter it based on spatial (region of interest) and social constraints (top-k closest vertices) at query time. That leads to pruning necessary paths during the social graph traversal procedure, and only returns the top-K social close venues. The research document then experimentally proves how the proposed approach outperforms existing baseline approaches by at least three times and also compare how each of our algorithms perform under various conditions on a real geo-social dataset extracted from Yelp.
ContributorsPasumarthy, Nitin (Author) / Sarwat, Mohamed (Thesis advisor) / Papotti, Paolo (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2016
158867-Thumbnail Image.png
Description
The accurate monitoring of the bulk transmission system of the electric power grid by sensors, such as Remote Terminal Units (RTUs) and Phasor Measurement Units (PMUs), is essential for maintaining the reliability of the modern power system. One of the primary objectives of power system monitoring is the identification of

The accurate monitoring of the bulk transmission system of the electric power grid by sensors, such as Remote Terminal Units (RTUs) and Phasor Measurement Units (PMUs), is essential for maintaining the reliability of the modern power system. One of the primary objectives of power system monitoring is the identification of the snapshots of the system at regular intervals by performing state estimation using the available measurements from the sensors. The process of state estimation corresponds to the estimation of the complex voltages at all buses of the system. PMU measurements play an important role in this regard, because of the time-synchronized nature of these measurements as well as the faster rates at which they are produced. However, a model-based linear state estimator created using PMU-only data requires complete observability of the system by PMUs for its continuous functioning. The conventional model-based techniques also make certain assumptions in the modeling of the physical system, such as the constant values of the line parameters. The measurement error models in the conventional state estimators are also assumed to follow a Gaussian distribution. In this research, a data mining technique using Deep Neural Networks (DNNs) is proposed for performing a high-speed, time-synchronized state estimation of the transmission system of the power system. The proposed technique uses historical data to identify the correlation between the measurements and the system states as opposed to directly using the physical model of the system. Therefore, the highlight of the proposed technique is its ability to provide an accurate, fast, time-synchronized estimate of the system states even in the absence of complete system observability by PMUs.
The state estimator is formulated for the IEEE 118-bus system and its reliable performance is demonstrated in the presence of redundant observability, complete observability, and incomplete observability. The robustness of the state estimator is also demonstrated by performing the estimation in presence of Non-Gaussian measurement errors and varying line parameters. The consistency of the DNN state estimator is demonstrated by performing state estimation for an entire day.
ContributorsChandrasekaran, Harish (Author) / Pal, Anamitra (Thesis advisor) / Sen, Arunabha (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2020
157919-Thumbnail Image.png
Description
Due to the rapid penetration of solar power systems in residential areas, there has

been a dramatic increase in bidirectional power flow. Such a phenomenon of bidirectional

power flow creates a need to know where Photovoltaic (PV) systems are

located, what their quantity is, and how much they generate. However, significant

challenges exist for

Due to the rapid penetration of solar power systems in residential areas, there has

been a dramatic increase in bidirectional power flow. Such a phenomenon of bidirectional

power flow creates a need to know where Photovoltaic (PV) systems are

located, what their quantity is, and how much they generate. However, significant

challenges exist for accurate solar panel detection, capacity quantification,

and generation estimation by employing existing methods, because of the limited

labeled ground truth and relatively poor performance for direct supervised learning.

To mitigate these issue, this thesis revolutionizes key learning concepts to (1)

largely increase the volume of training data set and expand the labelled data set by

creating highly realistic solar panel images, (2) boost detection and quantification

learning through physical knowledge and (3) greatly enhance the generation estimation

capability by utilizing effective features and neighboring generation patterns.

These techniques not only reshape the machine learning methods in the GIS

domain but also provides a highly accurate solution to gain a better understanding

of distribution networks with high PV penetration. The numerical

validation and performance evaluation establishes the high accuracy and scalability

of the proposed methodologies on the existing solar power systems in the

Southwest region of the United States of America. The distribution and transmission

networks both have primitive control methodologies, but now is the high time

to work out intelligent control schemes based on reinforcement learning and show

that they can not only perform well but also have the ability to adapt to the changing

environments. This thesis proposes a sequence task-based learning method to

create an agent that can learn to come up with the best action set that can overcome

the issues of transient over-voltage.
ContributorsHashmy, Syed Muhammad Yousaf (Author) / Weng, Yang (Thesis advisor) / Sen, Arunabha (Committee member) / Qin, Jiangchao (Committee member) / Arizona State University (Publisher)
Created2019