Matching Items (6)
Filtering by

Clear all filters

152133-Thumbnail Image.png
Description
I compare the effect of anonymous social network ratings (Yelp.com) and peer group recommendations on restaurant demand. I conduct a two-stage choice experiment in which restaurant visits in the first stage are informed by online social network reviews from Yelp.com, and visits in the second stage by peer network reviews.

I compare the effect of anonymous social network ratings (Yelp.com) and peer group recommendations on restaurant demand. I conduct a two-stage choice experiment in which restaurant visits in the first stage are informed by online social network reviews from Yelp.com, and visits in the second stage by peer network reviews. I find that anonymous reviewers have a stronger effect on restaurant preference than peers. I also compare the power of negative reviews with that of positive reviews. I found that negative reviews are more powerful compared to the positive reviews on restaurant preference. More generally, I find that in an environment of high attribute uncertainty, information gained from anonymous experts through social media is likely to be more influential than information obtained from peers.
ContributorsTiwari, Ashutosh (Author) / Richards, Timothy J. (Thesis advisor) / Qiu, Yueming (Committee member) / Grebitus, Carola (Committee member) / Arizona State University (Publisher)
Created2013
152896-Thumbnail Image.png
Descriptionyour words
ContributorsWang, Dan, M.S (Author) / Grebitus, Carola (Thesis advisor) / Schroeter, Christiane (Committee member) / Manfredo, Mark (Committee member) / Hughner, Renee (Committee member) / Arizona State University (Publisher)
Created2014
150382-Thumbnail Image.png
Description
This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate

This thesis proposed a novel approach to establish the trust model in a social network scenario based on users' emails. Email is one of the most important social connections nowadays. By analyzing email exchange activities among users, a social network trust model can be established to judge the trust rate between each two users. The whole trust checking process is divided into two steps: local checking and remote checking. Local checking directly contacts the email server to calculate the trust rate based on user's own email communication history. Remote checking is a distributed computing process to get help from user's social network friends and built the trust rate together. The email-based trust model is built upon a cloud computing framework called MobiCloud. Inside MobiCloud, each user occupies a virtual machine which can directly communicate with others. Based on this feature, the distributed trust model is implemented as a combination of local analysis and remote analysis in the cloud. Experiment results show that the trust evaluation model can give accurate trust rate even in a small scale social network which does not have lots of social connections. With this trust model, the security in both social network services and email communication could be improved.
ContributorsZhong, Yunji (Author) / Huang, Dijiang (Thesis advisor) / Dasgupta, Partha (Committee member) / Syrotiuk, Violet (Committee member) / Arizona State University (Publisher)
Created2011
151152-Thumbnail Image.png
Description
Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control

Access control is one of the most fundamental security mechanisms used in the design and management of modern information systems. However, there still exists an open question on how formal access control models can be automatically analyzed and fully realized in secure system development. Furthermore, specifying and managing access control policies are often error-prone due to the lack of effective analysis mechanisms and tools. In this dissertation, I present an Assurance Management Framework (AMF) that is designed to cope with various assurance management requirements from both access control system development and policy-based computing. On one hand, the AMF framework facilitates comprehensive analysis and thorough realization of formal access control models in secure system development. I demonstrate how this method can be applied to build role-based access control systems by adopting the NIST/ANSI RBAC standard as an underlying security model. On the other hand, the AMF framework ensures the correctness of access control policies in policy-based computing through automated reasoning techniques and anomaly management mechanisms. A systematic method is presented to formulate XACML in Answer Set Programming (ASP) that allows users to leverage off-the-shelf ASP solvers for a variety of analysis services. In addition, I introduce a novel anomaly management mechanism, along with a grid-based visualization approach, which enables systematic and effective detection and resolution of policy anomalies. I further evaluate the AMF framework through modeling and analyzing multiparty access control in Online Social Networks (OSNs). A MultiParty Access Control (MPAC) model is formulated to capture the essence of multiparty authorization requirements in OSNs. In particular, I show how AMF can be applied to OSNs for identifying and resolving privacy conflicts, and representing and reasoning about MPAC model and policy. To demonstrate the feasibility of the proposed methodology, a suite of proof-of-concept prototype systems is implemented as well.
ContributorsHu, Hongxin (Author) / Ahn, Gail-Joon (Thesis advisor) / Yau, Stephen S. (Committee member) / Dasgupta, Partha (Committee member) / Ye, Nong (Committee member) / Arizona State University (Publisher)
Created2012
156735-Thumbnail Image.png
Description
The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture

The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed.

Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks.
ContributorsWang, Suhang (Author) / Liu, Huan (Thesis advisor) / Aggarwal, Charu (Committee member) / Sen, Arunabha (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
154062-Thumbnail Image.png
Description
It is well understood that innovation drives productivity growth in agriculture. Innovation, however, is a process that involves activities distributed throughout the supply chain. In this dissertation I investigate three topics that are at the core of the distribution and diffusion of innovation: optimal licensing of university-based inventions, new

It is well understood that innovation drives productivity growth in agriculture. Innovation, however, is a process that involves activities distributed throughout the supply chain. In this dissertation I investigate three topics that are at the core of the distribution and diffusion of innovation: optimal licensing of university-based inventions, new variety adoption among farmers, and consumers’ choice of new products within a social network environment.

University researchers assume an important role in innovation, particularly as a result of the Bayh-Dole Act, which allowed universities to license inventions funded by federal research dollars, to private industry. Aligning the incentives to innovate at the university level with the incentives to adopt downstream, I show that non-exclusive licensing is preferred under both fixed fee and royalty licensing. Finding support for non-exclusive licensing is important as it provides evidence that the concept underlying the Bayh-Dole Act has economic merit, namely that the goals of university-based researchers are consistent with those of society, and taxpayers, in general.

After licensing, new products enter the diffusion process. Using a case study of small holders in Mozambique, I observe substantial geographic clustering of new-variety adoption decisions. Controlling for the other potential factors, I find that information diffusion through space is largely responsible for variation in adoption. As predicted by a social learning model, spatial effects are not based on geographic distance, but rather on neighbor-relationships that follow from information exchange. My findings are consistent with others who find information to be the primary barrier to adoption, and means that adoption can be accelerated by improving information exchange among farmers.

Ultimately, innovation is only useful when adopted by end consumers. Consumers’ choices of new products are determined by many factors such as personal preferences, the attributes of the products, and more importantly, peer recommendations. My experimental data shows that peers are indeed important, but “weak ties” or information from friends-of-friends is more important than close friends. Further, others regarded as experts in the subject matter exert the strongest influence on peer choices.
ContributorsFang, Di (Author) / Richards, Timothy J. (Thesis advisor) / Bolton, Ruth N (Committee member) / Grebitus, Carola (Committee member) / Manfredo, Mark (Committee member) / Arizona State University (Publisher)
Created2015