Matching Items (6)
Filtering by

Clear all filters

152133-Thumbnail Image.png
Description
I compare the effect of anonymous social network ratings (Yelp.com) and peer group recommendations on restaurant demand. I conduct a two-stage choice experiment in which restaurant visits in the first stage are informed by online social network reviews from Yelp.com, and visits in the second stage by peer network reviews.

I compare the effect of anonymous social network ratings (Yelp.com) and peer group recommendations on restaurant demand. I conduct a two-stage choice experiment in which restaurant visits in the first stage are informed by online social network reviews from Yelp.com, and visits in the second stage by peer network reviews. I find that anonymous reviewers have a stronger effect on restaurant preference than peers. I also compare the power of negative reviews with that of positive reviews. I found that negative reviews are more powerful compared to the positive reviews on restaurant preference. More generally, I find that in an environment of high attribute uncertainty, information gained from anonymous experts through social media is likely to be more influential than information obtained from peers.
ContributorsTiwari, Ashutosh (Author) / Richards, Timothy J. (Thesis advisor) / Qiu, Yueming (Committee member) / Grebitus, Carola (Committee member) / Arizona State University (Publisher)
Created2013
152896-Thumbnail Image.png
Descriptionyour words
ContributorsWang, Dan, M.S (Author) / Grebitus, Carola (Thesis advisor) / Schroeter, Christiane (Committee member) / Manfredo, Mark (Committee member) / Hughner, Renee (Committee member) / Arizona State University (Publisher)
Created2014
153479-Thumbnail Image.png
Description
Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or

Analysis of social networks has the potential to provide insights into wide range of applications. As datasets continue to grow, a key challenge is the lack of a widely applicable algorithmic framework for detection of statistically anomalous networks and network properties. Unlike traditional signal processing, where models of truth or empirical verification and background data exist and are often well defined, these features are commonly lacking in social and other networks. Here, a novel algorithmic framework for statistical signal processing for graphs is presented. The framework is based on the analysis of spectral properties of the residuals matrix. The framework is applied to the detection of innovation patterns in publication networks, leveraging well-studied empirical knowledge from the history of science. Both the framework itself and the application constitute novel contributions, while advancing algorithmic and mathematical techniques for graph-based data and understanding of the patterns of emergence of novel scientific research. Results indicate the efficacy of the approach and highlight a number of fruitful future directions.
ContributorsBliss, Nadya Travinin (Author) / Laubichler, Manfred (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2015
156735-Thumbnail Image.png
Description
The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture

The popularity of social media has generated abundant large-scale social networks, which advances research on network analytics. Good representations of nodes in a network can facilitate many network mining tasks. The goal of network representation learning (network embedding) is to learn low-dimensional vector representations of social network nodes that capture certain properties of the networks. With the learned node representations, machine learning and data mining algorithms can be applied for network mining tasks such as link prediction and node classification. Because of its ability to learn good node representations, network representation learning is attracting increasing attention and various network embedding algorithms are proposed.

Despite the success of these network embedding methods, the majority of them are dedicated to static plain networks, i.e., networks with fixed nodes and links only; while in social media, networks can present in various formats, such as attributed networks, signed networks, dynamic networks and heterogeneous networks. These social networks contain abundant rich information to alleviate the network sparsity problem and can help learn a better network representation; while plain network embedding approaches cannot tackle such networks. For example, signed social networks can have both positive and negative links. Recent study on signed networks shows that negative links have added value in addition to positive links for many tasks such as link prediction and node classification. However, the existence of negative links challenges the principles used for plain network embedding. Thus, it is important to study signed network embedding. Furthermore, social networks can be dynamic, where new nodes and links can be introduced anytime. Dynamic networks can reveal the concept drift of a user and require efficiently updating the representation when new links or users are introduced. However, static network embedding algorithms cannot deal with dynamic networks. Therefore, it is important and challenging to propose novel algorithms for tackling different types of social networks.

In this dissertation, we investigate network representation learning in social media. In particular, we study representative social networks, which includes attributed network, signed networks, dynamic networks and document networks. We propose novel frameworks to tackle the challenges of these networks and learn representations that not only capture the network structure but also the unique properties of these social networks.
ContributorsWang, Suhang (Author) / Liu, Huan (Thesis advisor) / Aggarwal, Charu (Committee member) / Sen, Arunabha (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
154062-Thumbnail Image.png
Description
It is well understood that innovation drives productivity growth in agriculture. Innovation, however, is a process that involves activities distributed throughout the supply chain. In this dissertation I investigate three topics that are at the core of the distribution and diffusion of innovation: optimal licensing of university-based inventions, new

It is well understood that innovation drives productivity growth in agriculture. Innovation, however, is a process that involves activities distributed throughout the supply chain. In this dissertation I investigate three topics that are at the core of the distribution and diffusion of innovation: optimal licensing of university-based inventions, new variety adoption among farmers, and consumers’ choice of new products within a social network environment.

University researchers assume an important role in innovation, particularly as a result of the Bayh-Dole Act, which allowed universities to license inventions funded by federal research dollars, to private industry. Aligning the incentives to innovate at the university level with the incentives to adopt downstream, I show that non-exclusive licensing is preferred under both fixed fee and royalty licensing. Finding support for non-exclusive licensing is important as it provides evidence that the concept underlying the Bayh-Dole Act has economic merit, namely that the goals of university-based researchers are consistent with those of society, and taxpayers, in general.

After licensing, new products enter the diffusion process. Using a case study of small holders in Mozambique, I observe substantial geographic clustering of new-variety adoption decisions. Controlling for the other potential factors, I find that information diffusion through space is largely responsible for variation in adoption. As predicted by a social learning model, spatial effects are not based on geographic distance, but rather on neighbor-relationships that follow from information exchange. My findings are consistent with others who find information to be the primary barrier to adoption, and means that adoption can be accelerated by improving information exchange among farmers.

Ultimately, innovation is only useful when adopted by end consumers. Consumers’ choices of new products are determined by many factors such as personal preferences, the attributes of the products, and more importantly, peer recommendations. My experimental data shows that peers are indeed important, but “weak ties” or information from friends-of-friends is more important than close friends. Further, others regarded as experts in the subject matter exert the strongest influence on peer choices.
ContributorsFang, Di (Author) / Richards, Timothy J. (Thesis advisor) / Bolton, Ruth N (Committee member) / Grebitus, Carola (Committee member) / Manfredo, Mark (Committee member) / Arizona State University (Publisher)
Created2015
157412-Thumbnail Image.png
Description
Understanding the consequences of changes in social networks is an important an-

thropological research goal. This dissertation looks at the role of data-driven social

networks on infectious disease transmission and evolution. The dissertation has two

projects. The first project is an examination of the effects of the superspreading

phenomenon, wherein a relatively few individuals

Understanding the consequences of changes in social networks is an important an-

thropological research goal. This dissertation looks at the role of data-driven social

networks on infectious disease transmission and evolution. The dissertation has two

projects. The first project is an examination of the effects of the superspreading

phenomenon, wherein a relatively few individuals are responsible for a dispropor-

tionate number of secondary cases, on the patterns of an infectious disease. The

second project examines the timing of the initial introduction of tuberculosis (TB) to

the human population. The results suggest that TB has a long evolutionary history

with hunter-gatherers. Both of these projects demonstrate the consequences of social

networks for infectious disease transmission and evolution.

The introductory chapter provides a review of social network-based studies in an-

thropology and epidemiology. Particular emphasis is paid to the concept and models

of superspreading and why to consider it, as this is central to the discussion in chapter

2. The introductory chapter also reviews relevant epidemic mathematical modeling

studies.

In chapter 2, social networks are connected with superspreading events, followed

by an investigation of how social networks can provide greater understanding of in-

fectious disease transmission through mathematical models. Using the example of

SARS, the research shows how heterogeneity in transmission rate impacts super-

spreading which, in turn, can change epidemiological inference on model parameters

for an epidemic.

Chapter 3 uses a different mathematical model to investigate the evolution of TB

in hunter-gatherers. The underlying question is the timing of the introduction of TB

to the human population. Chapter 3 finds that TB’s long latent period is consistent

with the evolutionary pressure which would be exerted by transmission on a hunter-

igatherer social network. Evidence of a long coevolution with humans indicates an

early introduction of TB to the human population.

Both of the projects in this dissertation are demonstrations of the impact of var-

ious characteristics and types of social networks on infectious disease transmission

dynamics. The projects together force epidemiologists to think about networks and

their context in nontraditional ways.
ContributorsNesse, Hans P (Author) / Hurtado, Ana Magdalena (Thesis advisor) / Castillo-Chavez, Carlos (Committee member) / Mubayi, Anuj (Committee member) / Arizona State University (Publisher)
Created2019