Matching Items (3)
Filtering by

Clear all filters

156403-Thumbnail Image.png
Description
Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET,

Commercial Li-ion cells (18650: Li4Ti5O12 anodes and LiCoO2 cathodes) were subjected to simulated Electric Vehicle (EV) conditions using various driving patterns such as aggressive driving, highway driving, air conditioning load, and normal city driving. The particular drive schedules originated from the Environment Protection Agency (EPA), including the SC-03, UDDS, HWFET, US-06 drive schedules, respectively. These drive schedules have been combined into a custom drive cycle, named the AZ-01 drive schedule, designed to simulate a typical commute in the state of Arizona. The battery cell cycling is conducted at various temperature settings (0, 25, 40, and 50 °C). At 50 °C, under the AZ-01 drive schedule, a severe inflammation was observed in the cells that led to cell failure. Capacity fading under AZ-01 drive schedule at 0 °C per 100 cycles is found to be 2%. At 40 °C, 3% capacity fading is observed per 100 cycles under the AZ-01 drive schedule. Modeling and prediction of discharge rate capability of batteries is done using Electrochemical Impedance Spectroscopy (EIS). High-frequency resistance values (HFR) increased with cycling under the AZ-01 drive schedule at 40 °C and 0 °C. The research goal for this thesis is to provide performance analysis and life cycle data for Li4Ti5O12 (Lithium Titanite) battery cells in simulated Arizona conditions. Future work involves an evaluation of second-life opportunities for cells that have met end-of-life criteria in EV applications.
ContributorsAbdelhay, Reem (Author) / Kannan, Arunachala Mada (Thesis advisor) / Wishart, Jeffrey (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2018
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131080-Thumbnail Image.png
Description
In March 2019, the United Nations Intergovernmental Panel on Climate Change (IPCC) released a report describing the critical importance of the next decade in mitigating the effects of climate change. From a consumer perspective, the most impactful method of reducing greenhouse gas emissions is by altering and/or reducing usage of

In March 2019, the United Nations Intergovernmental Panel on Climate Change (IPCC) released a report describing the critical importance of the next decade in mitigating the effects of climate change. From a consumer perspective, the most impactful method of reducing greenhouse gas emissions is by altering and/or reducing usage of personal and public transportation. Despite the significant technological advances in vehicle electrification, vehicle mileage, and hybrid technology, there is a gap in analysis performed about the relationship between oil prices and electric vehicle sales. This can be largely attributed to the large variation in oil and gas prices within the last decade and the short timeframe in which electric vehicles have been available to the average consumer. In addition to oil prices, significant driving factors of consumer electric vehicle purchases include battery range, availability and accessibly of charging infrastructure, and tax incentives. While consumers clearly have a significant role to play in driving electric vehicle sales, by virtue of the time commitment required to research and develop these emerging technologies, manufacturers have an arguably greater role in determining the market share EVs possess. The concept of “market disruption” versus “market replacement” is an intriguing explanation for the failure of electric vehicles, which as of early 2019 held a market share of less than 2%, to become the primary mode of transportation for most Americans, despite their wide-ranging financial and societal benefits, which will be a key challenge for the industry to overcome in the years to come.
ContributorsStout, Julia (Author) / Jennings, Cheryl (Thesis director) / Metcalfe, Carly (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05