Matching Items (9)
Filtering by

Clear all filters

133580-Thumbnail Image.png
Description
In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In

In this paper, we propose an autonomous throwing and catching system to be developed as a preliminary step towards the refinement of a robotic arm capable of improving strength and motor function in the limb. This will be accomplished by first autonomizing simpler movements, such as throwing a ball. In this system, an autonomous thrower will detect a desired target through the use of image processing. The launch angle and direction necessary to hit the target will then be calculated, followed by the launching of the ball. The smart catcher will then detect the ball as it is in the air, calculate its expected landing location based on its initial trajectory, and adjust its position so that the ball lands in the center of the target. The thrower will then proceed to compare the actual landing position with the position where it expected the ball to land, and adjust its calculations accordingly for the next throw. By utilizing this method of feedback, the throwing arm will be able to automatically correct itself. This means that the thrower will ideally be able to hit the target exactly in the center within a few throws, regardless of any additional uncertainty in the system. This project will focus of the controller and image processing components necessary for the autonomous throwing arm to be able to detect the position of the target at which it will be aiming, and for the smart catcher to be able to detect the position of the projectile and estimate its final landing position by tracking its current trajectory.
ContributorsLundberg, Kathie Joy (Co-author) / Thart, Amanda (Co-author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
147550-Thumbnail Image.png
Description

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting

The honors thesis presented in this document describes an extension to an electrical engineering capstone project whose scope is to develop the receiver electronics for an RF interrogator. The RF interrogator functions by detecting the change in resonant frequency of (i.e, frequency of maximum backscatter from) a target resulting from an environmental input. The general idea of this honors project was to design three frequency selective surfaces that would act as surrogate backscattering or reflecting targets that each contains a distinct frequency response. Using 3-D electromagnetic simulation software, three surrogate targets exhibiting bandpass frequency responses at distinct frequencies were designed and presented in this thesis.

ContributorsSisk, Ryan Derek (Author) / Aberle, James (Thesis director) / Chakraborty, Partha (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147715-Thumbnail Image.png
Description

A description of the robotics principles, actuators, materials, and programming used to test the durability of dendritic identifiers to be used in the produce supply chain. This includes the application of linear and rotational servo motors, PWM control of a DC motor, and hall effect sensors to create an encoder.

ContributorsRobertson, Stephen (Author) / Kozicki, Michael (Thesis director) / Manfredo, Mark (Committee member) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
166561-Thumbnail Image.png
Description

One answer to the lack of general knowledge for alternative energy and integration topics is seen in the workforce development content Laboratory of Energy and Power Solutions has generated for the past 6 years. LEAPS is a world-changing organization that provides both technical and business solutions in areas of grid

One answer to the lack of general knowledge for alternative energy and integration topics is seen in the workforce development content Laboratory of Energy and Power Solutions has generated for the past 6 years. LEAPS is a world-changing organization that provides both technical and business solutions in areas of grid modernization, workforce development, and global energy access that facilitates the global transition to a resilient, low-carbon economy. This paper will aim to explain the contributions of David Hobgood, an Arizona State University senior, to LEAPS workforce development content through the course of the Spring 2022 semester. This paper goes into detail on the process of completing this educational content, amplifies key aspect, and presents the results of a two week pilot that presented the generated content.

ContributorsHobgood, David (Author) / Johnson, Nathan (Thesis director) / Janko, Samantha (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05
Description

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.

ContributorsSnyder, Jack (Author) / Wu, Meng (Thesis director) / Walsh, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
ContributorsSnyder, Jack (Author) / Wu, Meng (Thesis director) / Walsh, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
Description
As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the

As more electric vehicles (EVs) are adopted, users need a solution to meet their expectations when it comes to Level 2 EV Charging (EVC). Currently, Adaptive Charging (AC) Techniques are used in multi-unit, public, settings. In the future, AC should be utilized to provide an optimized charging experience for the EV user in a single-unit residential application. In this experiment, an Electric Vehicle simulation tool was created using Python. A training dataset was generated from Alternative Fuels and Data Center (EVI-Pro) using charging data from Phoenix, Arizona. Similarly, the utility price plan chosen for this exercise was SRP Electric Vehicle Price plan. This will be the cost-basis for the thesis. There were four cases that were evaluated by the simulation tool. (1) Utility Guided Scheduling (2) Automatic Scheduling (3) Off-Site Enablement (4) Bidirectional enablement. These use-cases are some of the critical problems facing EV users when it comes to charging at home. Each of these scenarios and algorithms were proven to save the user money in their daily bill. Overall, the user will need some sort of weighted scenario that considers all four cases to provide the best solution to the user. All four scenarios support the use of Adaptive Charging techniques in residential level 2 electric vehicle chargers. By applying these techniques, the user can save up to 90% on their energy bill while offsetting the energy grid during peak hours. The adaptive charging techniques applied in this thesis are critical to the adoption of the next generation electric vehicles. Users need to be enabled to use the latest and greatest technology. In the future, individuals can use this report as a baseline to use an Artificial Intelligence model to make an educated case-by-case decision to deal with the variability of the data.
ContributorsSnyder, Jack (Author) / Wu, Meng (Thesis director) / Walsh, Stephanie (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2023-05
132326-Thumbnail Image.png
Description
The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using

The focus of this project investigates high mobility robotics by developing a fully integrated framework for a ball-balancing robot. Using Lagrangian mechanics, a model for the robot was derived and used to conduct trade studies on significant system parameters. With a broad understanding of system dynamics, controllers were designed using LQR methodology. A prototype was then built and tested to exhibit desired reference command following and disturbance attenuation.
ContributorsKapron, Mark Andrew (Author) / Rodriguez, Armando (Thesis director) / Artemiadis, Panagiotis (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Electrical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165040-Thumbnail Image.png
Description
The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in

The ability of magnetic resonance imaging (MRI) to image any part of the human body without the effects of harmful radiation such as in CAT and PET scans established MRI as a clinical mainstay for a variety of different ailments and maladies. Short wavelengths accompany the high frequencies present in high-field MRI, and are on the same scale as the human body at a static magnetic field strength of 3 T (128 MHz). As a result of these shorter wavelengths, standing wave effects are produced in the MR bore where the patient is located. These standing waves generate bright and dark spots in the resulting MR image, which correspond to irregular regions of high and low clarity. Coil loading is also an inevitable byproduct of subject positioning inside the bore, which decreases the signal that the region of interest (ROI) receives for the same input power. Several remedies have been proposed in the literature to remedy the standing wave effect, including the placement of high permittivity dielectric pads (HPDPs) near the ROI. Despite the success of HPDPs at smoothing out image brightness, these pads are traditionally bulky and take up a large spatial volume inside the already small MR bore. In recent years, artificial periodic structures known as metamaterials have been designed to exhibit specific electromagnetic effects when placed inside the bore. Although typically thinner than HPDPs, many metamaterials in the literature are rigid and cannot conform to the shape of the patient, and some are still too bulky for practical use in clinical settings. The well-known antenna engineering concept of fractalization, or the introduction of self-similar patterns, may be introduced to the metamaterial to display a specific resonance curve as well as increase the metamaterial’s intrinsic capacitance. Proposed in this paper is a flexible fractal-inspired metamaterial for application in 3 T MR head imaging. To demonstrate the advantages of this flexibility, two different metamaterial configurations are compared to determine which produces a higher localized signal-to-noise ratio (SNR) and average signal measured in the image: in the first configuration, the metamaterial is kept rigid underneath a human head phantom to represent metamaterials in the literature (single-sided placement); and in the second, the metamaterial is wrapped around the phantom to utilize its flexibility (double-sided placement). The double-sided metamaterial setup was found to produce an increase in normalized SNR of over 5% increase in five of six chosen ROIs when compared to no metamaterial use and showed a 10.14% increase in the total average signal compared to the single-sided configuration.
ContributorsSokol, Samantha (Author) / Sohn, Sung-Min (Thesis director) / Allee, David (Committee member) / Jones, Anne (Committee member) / Barrett, The Honors College (Contributor) / Electrical Engineering Program (Contributor)
Created2022-05