Matching Items (49)
Filtering by

Clear all filters

148184-Thumbnail Image.png
Description

In theory, Electric Vehicle (EV) ownership and renewable energy seem like a perfect solution to our climate crisis; however, unless done properly, the effects can be less than ideal. We need to find a way to maximize the impact of our efforts to reduce carbon emissions, which is exactly what

In theory, Electric Vehicle (EV) ownership and renewable energy seem like a perfect solution to our climate crisis; however, unless done properly, the effects can be less than ideal. We need to find a way to maximize the impact of our efforts to reduce carbon emissions, which is exactly what the heart of my paper gets to. Carbon emissions are bad for the environment because they comprise a large majority of greenhouse gases. Greenhouse gases have recently become dramatically out of balance and have resulted in an increase in respiratory diseases from smog and air pollution, as well as extreme weather and an increase in wildfires. Getting these greenhouse gases back in balance and maintaining an ecological balance is the goal of sustainability. According to the Environmental Protection Agency (the EPA), transportation makes up 29% of greenhouse gas emissions in the US followed closely by electricity generation at 28%, which makes Electric Vehicles the perfect target for reducing greenhouse gas emissions<br/>Arizona has many unique constraints when it comes to its electric infrastructure and its electric generation energy mix, which means the impacts of EV ownership become extremely complicated.<br/> In my paper, I aim to address the question: What are the carbon impact effects of Electric Vehicles (EVs) in Arizona through the lens of 1) the time of day that charging occurs, 2) the infrastructure needed to support EV penetration and 3) the incentives given to the public to help provide the impetus for making greener choices? Using the best available research on how EVs are being adopted to reduce emissions, I will provide conclusive recommendations and a framework for how Arizona can best reduce carbon emissions through EVs.

ContributorsSherman, Jessica Janiece (Author) / Keeler, Lauren (Thesis director) / Shaeffer, Lisa (Committee member) / Computer Science and Engineering Program (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148017-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsKuhler, Madison Frances (Co-author) / Capuano, Bailey (Co-author) / Preston, Michael (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148037-Thumbnail Image.png
Description

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

"Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved."

ContributorsCapuano, Bailey Kellen (Co-author) / Preston, Michael (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148059-Thumbnail Image.png
Description

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger

Generating an astounding $110.7 billion annually in domestic revenue alone [1], the world of accounting is one deceptively lacking automation of its most business-critical processes. While accounting tools do exist for the common person, especially when it is time to pay their taxes, such innovations scarcely exist for many larger industrial tasks. Exceedingly common business events, such as Business Combinations, are surprisingly manual tasks despite their $1.1 trillion valuation in 2020 [2]. This work presents the twin accounting solutions TurboGAAP and TurboIFRS: an unprecedented leap into these murky waters in an attempt to automate and streamline these gigantic accounting tasks once entrusted only to teams of experienced accountants.
A first-to-market approach to a trillion-dollar problem, TurboGAAP and TurboIFRS are the answers for years of demands from the accounting sector that established corporations have never solved.

ContributorsPreston, Michael Ernest (Co-author) / Capuano, Bailey (Co-author) / Kuhler, Madison (Co-author) / Chen, Yinong (Thesis director) / Hunt, Neil (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148055-Thumbnail Image.png
Description

A large section of United States citizens live far away from supermarkets and do not have<br/>an easy way to get to one. This portion of the population lives in an area called a food desert.<br/>Food deserts are geographic areas in which access to affordable, healthy food, such as fresh<br/>produce, is

A large section of United States citizens live far away from supermarkets and do not have<br/>an easy way to get to one. This portion of the population lives in an area called a food desert.<br/>Food deserts are geographic areas in which access to affordable, healthy food, such as fresh<br/>produce, is limited or completely nonexistent due to the absence of convenient grocery stores.<br/>Individuals living in food deserts are left to rely on convenience store snacks and fast food for<br/>their meals because they do not have access to a grocery store with fresh produce in their area.<br/>Unhealthy foods also lead to health issues, as people living in food deserts are typically at a<br/>higher risk of diet-related conditions, such as obesity, diabetes, and cardiovascular disease.<br/>Harvest, a sustainable farming network, is a smartphone application that teaches and guides<br/>people living in small spaces through the process of growing fresh, nutritious produce in their<br/>own homes. The app will guide users through the entire process of gardening, from seed to<br/>harvest. Harvest would give individuals living in food deserts an opportunity to access fresh<br/>produce that they currently can’t access. An overwhelming response based on our user<br/>discussion and market analysis revealed that our platform was in demand. Development of a<br/>target market, brand guide, and full lifecycle were beneficial during the second semester as<br/>Harvest moved forward. Through the development of a website, social media platform, and<br/>smartphone application, Harvest grew traction for our platform. Our social media accounts saw a<br/>1700% growth rate, and this wider audience was able to provide helpful feedback.

ContributorsBalamut, Hannah (Co-author) / Raimondo, Felix (Co-author) / Tobey, Anna (Co-author) / Byrne, Jared (Thesis director) / Satpathy, Asish (Committee member) / Morrison School of Agribusiness (Contributor) / Department of Marketing (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
135574-Thumbnail Image.png
Description
The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the

The purpose of our research was to develop recommendations and/or strategies for Company A's data center group in the context of the server CPU chip industry. We used data collected from the International Data Corporation (IDC) that was provided by our team coaches, and data that is accessible on the internet. As the server CPU industry expands and transitions to cloud computing, Company A's Data Center Group will need to expand their server CPU chip product mix to meet new demands of the cloud industry and to maintain high market share. Company A boasts leading performance with their x86 server chips and 95% market segment share. The cloud industry is dominated by seven companies Company A calls "The Super 7." These seven companies include: Amazon, Google, Microsoft, Facebook, Alibaba, Tencent, and Baidu. In the long run, the growing market share of the Super 7 could give them substantial buying power over Company A, which could lead to discounts and margin compression for Company A's main growth engine. Additionally, in the long-run, the substantial growth of the Super 7 could fuel the development of their own design teams and work towards making their own server chips internally, which would be detrimental to Company A's data center revenue. We first researched the server industry and key terminology relevant to our project. We narrowed our scope by focusing most on the cloud computing aspect of the server industry. We then researched what Company A has already been doing in the context of cloud computing and what they are currently doing to address the problem. Next, using our market analysis, we identified key areas we think Company A's data center group should focus on. Using the information available to us, we developed our strategies and recommendations that we think will help Company A's Data Center Group position themselves well in an extremely fast growing cloud computing industry.
ContributorsJurgenson, Alex (Co-author) / Nguyen, Duy (Co-author) / Kolder, Sean (Co-author) / Wang, Chenxi (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / Department of Finance (Contributor) / Department of Management (Contributor) / Department of Information Systems (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / School of Accountancy (Contributor) / WPC Graduate Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135654-Thumbnail Image.png
Description
Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key

Company X has developed RealSenseTM technology, a depth sensing camera that provides machines the ability to capture three-dimensional spaces along with motion within these spaces. The goal of RealSense was to give machines human-like senses, such as knowing how far away objects are and perceiving the surrounding environment. The key issue for Company X is how to commercialize RealSense's depth recognition capabilities. This thesis addresses the problem by examining which markets to address and how to monetize this technology. The first part of the analysis identified potential markets for RealSense. This was achieved by evaluating current markets that could benefit from the camera's gesture recognition, 3D scanning, and depth sensing abilities. After identifying seven industries where RealSense could add value, a model of the available, addressable, and obtainable market sizes was developed for each segment. Key competitors and market dynamics were used to estimate the portion of the market that Company X could capture. These models provided a forecast of the discounted gross profits that could be earned over the next five years. These forecasted gross profits, combined with an examination of the competitive landscape and synergistic opportunities, resulted in the selection of the three segments thought to be most profitable to Company X. These segments are smart home, consumer drones, and automotive. The final part of the analysis investigated entrance strategies. Company X's competitive advantages in each space were found by examining the competition, both for the RealSense camera in general and other technologies specific to each industry. Finally, ideas about ways to monetize RealSense were developed by exploring various revenue models and channels.
ContributorsDunn, Nicole (Co-author) / Boudreau, Thomas (Co-author) / Kinzy, Chris (Co-author) / Radigan, Thomas (Co-author) / Simonson, Mark (Thesis director) / Hertzel, Michael (Committee member) / WPC Graduate Programs (Contributor) / Department of Psychology (Contributor) / Department of Finance (Contributor) / School of Accountancy (Contributor) / Department of Economics (Contributor) / School of Mathematical and Statistical Science (Contributor) / W. P. Carey School of Business (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135955-Thumbnail Image.png
Description
Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset

Instead of providing the illusion of agency to a reader via a tree or network of prewritten, branching paths, an interactive story should treat the reader as a player who has meaningful influence on the story. An interactive story can accomplish this task by giving the player a large toolset for expression in the plot. LudoNarrare, an engine for interactive storytelling, puts "verbs" in this toolset. Verbs are contextual choices of action given to agents in a story that result in narrative events. This paper begins with an analysis and statement of the problem of creating interactive stories. From here, various attempts to solve this problem, ranging from commercial video games to academic research, are given a brief overview to give context to what paths have already been forged. With the background set, the model of interactive storytelling that the research behind LudoNarrare led to is exposed in detail. The section exploring this model contains explanations on what storyworlds are and how they are structured. It then discusses the way these storyworlds can be brought to life. The exposition on the LudoNarrare model finally wraps up by considering the way storyworlds created around this model can be designed. After the concepts of LudoNarrare are explored in the abstract, the story of the engine's research and development and the specifics of its software implementation are given. With LudoNarrare fully explained, the focus then turns to plans for evaluation of its quality in terms of entertainment value, robustness, and performance. To conclude, possible further paths of investigation for LudoNarrare and its model of interactive storytelling are proposed to inspire those who wish to continue in the spirit of the project.
ContributorsStark, Joshua Matthew (Author) / VanLehn, Kurt (Thesis director) / Wetzel, Jon (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2015-12
137007-Thumbnail Image.png
Description
This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented,

This thesis aims to enhance K-6 Education in the United States by developing recommendations for how technology is utilized in the classroom as a means to teach collaborative skills. By applying the technological capabilities we have today to the Common Core State Standards that are gradually being adopted and implemented, officials can improve the quality of education across the country and create classroom environments conducive to knowledge acquisition and skill development.
The research begins with the history of standards, starting with traditional outcome-based standards. It then delves into the Partnership for 21st Century Skills (P21), which highlights the type of skills 21st century students are expected to develop and master by the time they enter college and careers. Next, it explores the hot topic of Education to this date: Common Core State Standards. In the midst of educational reform, these standards seek to add consistency across the nation in regards to what students should know at each grade level and also encourage teaching of the 21st century skills. This section briefly details the content of Common Core English Language Arts and Mathematics standards.
After summarizing P21 and Common Core, this report shifts into its focused 21st century skill: collaboration. As one of the 4 C’s that P21 and Common Core emphasize in their standards, it is imperative to research critical elements of collaboration as they relate to groups and teams of all ages. Even more specifically, collaboration is a practice that is becoming more and more standard in business across all industries, so it is a skill that is highly in demand for students to acquire. In regards to collaboration, Executive Vice President of Verizon, Bob Mudge, states, “companies are able to innovate much more quickly and even create solutions to problems that may not be prevalent issues yet” (Mudge 1). The standards expect that students will be prepared to collaborate in college and careers, so key elements of collaboration in those settings—in-person or virtual—need apply or be simplified to K-6 collaborative environments. This section also analyzes a case study experiment on young children about how technology functionality and design enables, encourages, or enforces collaboration.
Next, this thesis reviews three case studies that represent evolution in our understanding of technology’s role as a support system in teaching and learning collaboration. The first case study shows how simple handheld devices assisted in correcting weaknesses in a variety of collaborative and organizational skills. The second study utilizes interactive tabletop technology to realize the idea of tracking collaborative ability in real time through synchronized audio and touch recording. Finally, researchers assess the effectiveness of one student to one device (1:1) initiatives by gathering student-reported data before and after the program’s implementation, which largely speak to the direction of many schools’ technology strategies.
To supplement all of the secondary research above, the researcher of this thesis conducted interviews with nine K-6 teachers to gather their insights on collaboration and how they facilitate it. They explain how they use technology in their classroom to enhance the learning environment. Additionally, they give opinions on what could be done to make collaboration more easily taught and facilitated, as well as what would better develop their students’ collaborative skills.
The compilation of this information then leads to implications of what needs to be present, from a technology standpoint, to more effectively teach collaborative skills to our schoolchildren. This includes a brief industry analysis of a program that already exists, as well as recommendations for new technology that considers the research conducted throughout the paper. Another implication addressed centers on the instruction and facilitation of technology and the digital divide that can result from varying competency among teachers, which brings to light the need for proper technology development programs for educators.
ContributorsPetrovich, Nicholas Hugh (Author) / Ostrom, Amy (Thesis director) / Ostrom, Lonnie (Committee member) / Barrett, The Honors College (Contributor) / Department of Marketing (Contributor) / Department of Management (Contributor) / School of Film, Dance and Theatre (Contributor)
Created2014-05