Matching Items (67)
Filtering by

Clear all filters

148134-Thumbnail Image.png
Description

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it

In the United States, clinical testing is monitored by the federal and state governments, held to standards to ensure the safety and efficacy of these tests, as well as maintaining privacy for patients receiving a test. In order for the ABCTL to lawfully operate in the state of Arizona, it had to meet various legal criteria. These major legal considerations, in no particular order, are: Clinical Laboratory Improvement Amendments compliance; FDA Emergency Use Authorization (EUA); Health Insurance Portability and Accountability Act compliance; state licensure; patient, state, and federal result reporting; and liability. <br/>In this paper, the EUA pathway will be examined and contextualized in relation to the ABCTL. This will include an examination of the FDA regulations and policies that affect the laboratory during its operations, as well as a look at the different authorization pathways for diagnostic tests present during the COVID-19 pandemic.

ContributorsJenkins, Landon James (Co-author) / Espinoza, Hale Anna (Co-author) / Filipek, Marina (Co-author) / Ross, Nathaniel (Co-author) / Salvatierra, Madeline (Co-author) / Compton, Carolyn (Thesis director) / Rigoni, Adam (Committee member) / Stanford, Michael (Committee member) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148153-Thumbnail Image.png
Description

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe.

The ASU Biodesign Clinical Testing Laboratory began in March 2020 after the severe acute respiratory syndrome, coronavirus 2, began spreading throughout the world. ASU worked towards implementing  its own efficient way of testing for the virus, in order to assist the university but also keep the communities around it safe. By developing its own strategy for COVID-19 testing, ASU was on the forefront of research by developing new ways to test for the virus. This process began when research labs at ASU were quickly converted into clinical testing laboratories, which used saliva testing to develop swift COVID-19 diagnostic tests for the Arizona community. The lab developed more accurate and time efficient results, while also converting Nasopharyngeal tests to saliva tests. Not only did this allow for fewer amounts of resources required, but more individuals were able to get tested at faster rates. The ASU Biodesign Clinical Testing Laboratory (ABCTL) was able to accomplish this through the adaptation of previous machines and personnel to fit the testing needs of the community. In the future, the ABCTL will continue to adapt to the ever-changing needs of the community in regards to the unprecedented COVID-19 pandemic. The research collected throughout the past year following the breakout of the COVID-19 pandemic is a reflection of the impressive strategy ASU has created to keep its communities safe, while continuously working towards improving not only the testing sites and functions, but also the ways in which an institution approaches and manages an unfortunate impact on diverse communities.

ContributorsMajhail, Kajol (Co-author) / Smetanick, Jennifer (Co-author) / Anderson, Laura (Co-author) / Ruan, Ellen (Co-author) / Shears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148154-Thumbnail Image.png
Description

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a

Since the start of the COVID 19 pandemic there has undoubtedly been an increase in social distancing orders, isolation, and overall general stress. The current outbreak has been proven to have a heavy impact on issues involving mental health. Social distancing mandates contributed to isolation, which in turn caused a surge in psychiatric disorders, either newly onset or exacerbating preexisting conditions (Torales, et al, 2020). Due to significant alterations in daily life, an increase in physical inactivity has already been proven to lead to deterioration of cardiovascular health (Pecanha et al, 2020). Stay at home orders have prevented otherwise healthy people from keeping up their daily exercise and eating habits, contributing to a heightened amount of mental health and hypertensive related issues.<br/>In addition to these health concerns, the pandemic has put stress upon pharmaceutical management practices. Drug utilization surges have led to an impact on patient care and management which requires careful measures to be taken to reduce the inflow of sick patients (Badreldin and Atallah, 2020). A global drug shortage has been a result of these drug utilizations. Understanding the alterations in the usage of specific medications such as prescription psychotropics, antihypertensive drugs, and antidiabetic agents can aid in population management and drug shortages.

ContributorsCastro, Ana Maria (Author) / Martin, Thomas (Thesis director) / Nunez, Diane (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148156-Thumbnail Image.png
Description

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition

This thesis project is part of a larger collaboration documenting the history of the ASU Biodesign Clinical Testing Laboratory (ABCTL). There are many different aspects that need to be considered when transforming to a clinical testing laboratory. This includes the different types of tests performed in the laboratory. In addition to the diagnostic polymerase chain reaction (PCR) test that is performed detecting the presence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), antibody testing is also performed in clinical laboratories. Antibody testing is used to detect a previous infection. Antibodies are produced as part of the immune response against SARS-CoV-2. There are many different forms of antibody tests and their sensitives and specificities have been examined and reviewed in the literature. Antibody testing can be used to determine the seroprevalence of the disease which can inform policy decisions regarding public health strategies. The results from antibody testing can also be used for creating new therapeutics like vaccines. The ABCTL recognizes the shifting need of the community to begin testing for previous infections of SARS-CoV-2 and is developing new forms of antibody testing that can meet them.

ContributorsRuan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Anderson, Laura (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Mitch (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148171-Thumbnail Image.png
Description

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy

As the return to normality in the wake of the COVID-19 pandemic enters its early stages, the necessity for accurate, quick, and community-wide surveillance of SARS-CoV-2 has been emphasized. Wastewater-based epidemiology (WBE) has been used across the world as a tool for monitoring the pandemic, but studies of its efficacy in comparison to the best-known method for surveillance, randomly selected COVID-19 testing, has limited research. This study evaluated the trends and correlations present between SARS-CoV-2 in the effluent wastewater of a large university campus and random COVID-19 testing results published by the university. A moderately strong positive correlation was found between the random testing and WBE surveillance methods (r = 0.63), and this correlation was strengthened when accommodating for lost samples during the experiment (r = 0.74).

ContributorsWright, Jillian (Author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148013-Thumbnail Image.png
Description

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation in general. Chapter 3 discusses the psychological effects of social isolation. Finally, this thesis concludes with a discussion of what can be done to help those experiencing social isolation during the pandemic.

ContributorsHarvey, Kira Rachelle (Author) / Sturgess, Jessica (Thesis director) / Tucker, Derek (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147794-Thumbnail Image.png
Description

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against

The nineteenth-century invention of smallpox vaccination in Great Britain has been well studied for its significance in the history of medicine as well as the ways in which it exposes Victorian anxieties regarding British nationalism, rural and urban class struggles, the behaviors of women, and animal contamination. Yet inoculation against smallpox by variolation, vaccination’s predecessor and a well-established Chinese medical technique that was spread from east to west to Great Britain, remains largely understudied in modern scholarly literature. In the early 1700s, Lady Mary Wortley Montagu, credited with bringing smallpox variolation to Great Britain, wrote first about the practice in the Turkish city of Adrianople and describes variolation as a “useful invention,” yet laments that, unlike the Turkish women who variolate only those in their “small neighborhoods,” British doctors would be able to “destroy this [disease] swiftly” worldwide should they adopt variolation. Examined through the lens of Edward Said’s Orientalism, techno-Orientalism, and medical Orientalism and contextualized by a comparison to British attitudes toward nineteenth century vaccination, eighteenth century smallpox variolation’s introduction to Britain from the non-British “Orient” represents an instance of reversed Orientalism, in which a technologically deficient British “Occident” must “Orientalize” itself to import the superior medical technology of variolation into Britain. In a scramble to retain technological superiority over the Chinese Orient, Britain manufactures a sense of total difference between an imagined British version of variolation and a real, non-British version of variolation. This imagination of total difference is maintained through characterizations of the non-British variolation as ancient, unsafe, and practiced by illegitimate practitioners, while the imagined British variolation is characterized as safe, heroic, and practiced by legitimate British medical doctors. The Occident’s instance of medical technological inferiority brought about by the importation of variolation from the Orient, which I propose represents an eighteenth-century instance of what I call medical techno-Orientalism, represents an expression of British anxiety over a medical technologically superior Orient—anxieties which express themselves as retaliatory attacks on the Orient and variolation as it is practiced in the Orient—and as an expression of British desire to maintain medical technological superiority over the Orient.

ContributorsMalotky, Braeden M (Author) / Agruss, David (Thesis director) / Soares, Rebecca (Committee member) / School of Life Sciences (Contributor) / School of Molecular Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148079-Thumbnail Image.png
Description

In mid-March of 2020, Arizona State University transformed one of its research labs into ASU Biodesign Clinical Testing Laboratory (ABCTL) to meet the testing needs of the surrounding community during the COVID-19 pandemic. The lab uses RT-qPCR, or reverse transcription polymerase chain reaction, to match the components of a biosample

In mid-March of 2020, Arizona State University transformed one of its research labs into ASU Biodesign Clinical Testing Laboratory (ABCTL) to meet the testing needs of the surrounding community during the COVID-19 pandemic. The lab uses RT-qPCR, or reverse transcription polymerase chain reaction, to match the components of a biosample to a portion of the SARS-CoV-2 genome. The ABCTL uses the TaqPath™ COVID-19 Combo Kit, which has undergone many different types of efficacy and efficiency tests and can successfully denote saliva samples as positive even when an individual is infected with various emerging strains of the SARS-CoV-2. Samples are collected by volunteers at testing sites with stringent biosafety precautions and processed in the lab using specific guidelines. As the pandemic eventually becomes less demanding, the ABCTL plans to utilize the Devil’s Drop-off program at various school districts around Arizona to increase testing availability, transfer to the SalivaDirect method, and provide other forms of pathogen testing to distinguish COVID-19 from other types of infections in the ASU community.

ContributorsAnderson, Laura (Co-author) / Ruan, Ellen (Co-author) / Smetanick, Jennifer (Co-author) / Majhail, Kajol (Co-author) / Breshears, Scott (Co-author) / Compton, Carolyn (Thesis director) / Magee, Dewey (Committee member) / School of Life Sciences (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

The COVID-19 pandemic places significant strain on the U.S. healthcare system due to the high number of coronavirus cases. During the pandemic, there was much unknown about the virus, its course of the disease, COVID-19 diagnosis, treatments, or other imperative information needed to contain the virus. Resources within the healthcare

The COVID-19 pandemic places significant strain on the U.S. healthcare system due to the high number of coronavirus cases. During the pandemic, there was much unknown about the virus, its course of the disease, COVID-19 diagnosis, treatments, or other imperative information needed to contain the virus. Resources within the healthcare system, such as PPE and healthcare workers, were in short supply and exacerbated the difficulty of managing the viral outbreak. Peer-reviewed articles suggest that telehealth, the application of electronic information and telecommunication technologies in healthcare, proved useful in public health and clinical care during the 2020 public health emergency due to a novel virus. The scoping review broadly assessed themes of telehealth’s strengths and weaknesses during the COVID-19 pandemic. These findings could suggest how virtual medicine may be a helpful tool to improve access in addition to the quality of care in the future of medicine. Assessments of case studies suggest that telehealth helped provide care to large patient volumes by aiding with communication, data collection, triage, remote patient monitoring, and critical care. Limitations of expanding telehealth subsequent to the pandemic include, but not limited to, a lack of national standards for practice and restrictions of utility for certain populations. Populations may include those with low socioeconomic status, specific cultural practices, and beliefs, or physical and cognitive ability barriers. Outlining the benefits and limitations of telehealth may suggest how virtual medicine can provide valuable in day-to-day medical practices and other pathogenic outbreaks.

ContributorsBlock, Andrea (Author) / Tanner, Rene (Thesis director) / Maienschein, Jane (Committee member) / Marvasti, Farshad (Committee member) / School of Life Sciences (Contributor, Contributor) / School of Human Evolution & Social Change (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147516-Thumbnail Image.png
Description

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the

Lithium ion batteries are quintessential components of modern life. They are used to power smart devices — phones, tablets, laptops, and are rapidly becoming major elements in the automotive industry. Demand projections for lithium are skyrocketing with production struggling to keep up pace. This drive is due mostly to the rapid adoption of electric vehicles; sales of electric vehicles in 2020 are more than double what they were only a year prior. With such staggering growth it is important to understand how lithium is sourced and what that means for the environment. Will production even be capable of meeting the demand as more industries make use of this valuable element? How will the environmental impact of lithium affect growth? This thesis attempts to answer these questions as the world looks to a decade of rapid growth for lithium ion batteries.

ContributorsMelton, John (Author) / Brian, Jennifer (Thesis director) / Karwat, Darshawn (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05