Matching Items (12)
Filtering by

Clear all filters

158092-Thumbnail Image.png
Description
The dissertation addresses questions tied in to the challenges posed by the impact of environmental factors on the nonlinear dynamics of social upward mobility. The proportion of educated individuals from various socio-economic backgrounds is used as a proxy for the environmental impact on the status quo state.

The dissertation addresses questions tied in to the challenges posed by the impact of environmental factors on the nonlinear dynamics of social upward mobility. The proportion of educated individuals from various socio-economic backgrounds is used as a proxy for the environmental impact on the status quo state.

Chapter 1 carries out a review of the mobility models found in the literature and sets the economic context of this dissertation. Chapter 2 explores a simple model that considers poor and rich classes and the impact that educational success may have on altering mobility patterns. The role of the environment is modeled through the use of a modified version of the invasion/extinction model of Richard Levins. Chapter 3 expands the socio-economic classes to include a large middle class to study the role of social mobility in the presence of higher heterogeneity. Chapter 4 includes demographic growth and explores what would be the time scales needed to accelerate mobility. The dissertation asked how long it will take to increase by 22% the proportion of educated from the poor classes under demographic versus non-demographic growth conditions. Chapter 5 summarizes results and includes a discussion of results. It also explores ways of modeling the influence of nonlinear dynamics of mobility, via exogenous factors. Finally, Chapter 6 presents economic perspectives about the role of environmental influence on college success. The framework can be used to incorporate the impact of economic factors and social changes, such as unemployment, or gap between the haves and have nots. The dissertation shows that peer influence (poor influencing the poor) has a larger effect than class influence (rich influencing the poor). Additionally, more heterogeneity may ease mobility of groups but results depend on initial conditions. Finally, average well-being of the community and income disparities may improve over time. Finally, population growth may extend time scales needed to achieve a specific goal of educated poor.
ContributorsMontalvo, Cesar Paul (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Mubayi, Anuj (Thesis advisor) / Perrings, Charles (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2020
187355-Thumbnail Image.png
Description
Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating

Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating relationships measured at aggregated scales to the individual level can result in ecological fallacy. Prior work has also primarily studied the most severe health outcomes: hospitalization/emergency care and mortality. It is likely that magnitudes more people are experiencing negative health impacts from heat that do not necessarily result in medical care. Such less severe impacts are under-researched in the literature.This dissertation addresses these knowledge gaps by identifying how social characteristics and physical measurements of heat at the individual and household level act independently and in concert to influence human heat-related outcomes, especially less severe outcomes. In the first paper, meta-analysis was used to quantify the summary effects of vulnerability indicators on incidence of heat-related illness. More proximal vulnerability indicators (e.g., residential air conditioning use, indoor heat exposure, etc.) tended to have the strongest impact on odds of experiencing heat-related illness than more distal indicators. In the next paper, indoor air temperature observations were related to the social characteristics of the residents. The strongest predictor of indoor air temperature was the residents’ ideal thermally comfortable temperature, despite affordability. In the final paper, fine scale biometeorological observations of the outdoor thermal environment near residents’ homes were linked to their experience with heat-related illness. The outdoor thermal environment appeared to have a stronger, more consistent impact on heat-related illness among households in a lower income neighborhood compared to a higher income one. These findings affirm the value of employing residential heat mitigation solutions at the individual and household scale, indoors and outdoors. Across all chapters, the indoor thermal environment, and the ability to modify it, had a clear impact on residents’ comfort and health. Solutions that target the most proximal causal factors of heat-related illness will likely have the greatest impact on reducing the burden of heat on human health and well-being.
ContributorsWright, Mary K (Author) / Hondula, David M (Thesis advisor) / Larson, Kelli L (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2023