Matching Items (339)
Filtering by

Clear all filters

149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149991-Thumbnail Image.png
Description
With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications

With the introduction of compressed sensing and sparse representation,many image processing and computer vision problems have been looked at in a new way. Recent trends indicate that many challenging computer vision and image processing problems are being solved using compressive sensing and sparse representation algorithms. This thesis assays some applications of compressive sensing and sparse representation with regards to image enhancement, restoration and classication. The first application deals with image Super-Resolution through compressive sensing based sparse representation. A novel framework is developed for understanding and analyzing some of the implications of compressive sensing in reconstruction and recovery of an image through raw-sampled and trained dictionaries. Properties of the projection operator and the dictionary are examined and the corresponding results presented. In the second application a novel technique for representing image classes uniquely in a high-dimensional space for image classification is presented. In this method, design and implementation strategy of the image classification system through unique affine sparse codes is presented, which leads to state of the art results. This further leads to analysis of some of the properties attributed to these unique sparse codes. In addition to obtaining these codes, a strong classier is designed and implemented to boost the results obtained. Evaluation with publicly available datasets shows that the proposed method outperforms other state of the art results in image classication. The final part of the thesis deals with image denoising with a novel approach towards obtaining high quality denoised image patches using only a single image. A new technique is proposed to obtain highly correlated image patches through sparse representation, which are then subjected to matrix completion to obtain high quality image patches. Experiments suggest that there may exist a structure within a noisy image which can be exploited for denoising through a low-rank constraint.
ContributorsKulkarni, Naveen (Author) / Li, Baoxin (Thesis advisor) / Ye, Jieping (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
149794-Thumbnail Image.png
Description
Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. To validate these approaches in a disease-specific context, we built a schizophreniaspecific network based on the inferred associations and performed a comprehensive prioritization of human genes with respect to the disease. These results are expected to be validated empirically, but computational validation using known targets are very positive.
ContributorsLee, Jang (Author) / Gonzalez, Graciela (Thesis advisor) / Ye, Jieping (Committee member) / Davulcu, Hasan (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Arizona State University (Publisher)
Created2011
147846-Thumbnail Image.png
Description

Over the course of 2020, individuals and organizations were thrown various unprecedented obstacles that necessitated flexibility, empathy, and understanding. Many organizations were forced to reevaluate their financial status, their purpose, and how they could provide for their employees. The COVID-19 pandemic meant that most companies had to introduce a ‘work

Over the course of 2020, individuals and organizations were thrown various unprecedented obstacles that necessitated flexibility, empathy, and understanding. Many organizations were forced to reevaluate their financial status, their purpose, and how they could provide for their employees. The COVID-19 pandemic meant that most companies had to introduce a ‘work from home’ policy, drastically decreasing the face-to-face contact that employees had with each other and leadership. The virus, coupled with the social and political unrest in the U.S. in the wake of the Black Lives Matter movement and the 2020 presidential election, inspired many companies to reframe their organization and redefine their goals.<br/> The B2B (business-to-business) Marketing Agency, The Mx Group, is preparing for a change in leadership, with the current Chief Executive Officer and Founder stepping down, being replaced by the President of the company. The company plans to execute the transition in the spring of 2022, allowing them the rest of 2021 to plan for the change, catering to employees’ individual and the company’s collective needs. It was also prompted by factors such as the COVID-19 pandemic to reevaluate the values that it upholds as an organization, coinciding with the change in leadership. Leaders of the company are actively encouraging employees to engage with these values by recognizing when a colleague performs in alignment with a value.<br/> In reframing their organization, The Mx Group has a significant opportunity to uniquely position itself in the industry. Lee G. Bolman and Terrence E. Deal (2017) introduced four frames: human resources, symbolic, structural, and political, as a way to guide a transformative application of leadership and management in business. Analyzed from these perspectives, The Mx Group can utilize contemporary ideas to efficiently and effectively seize its opportunity of embedding new values and a change in leadership.

ContributorsLanghorn, Chloe Nicole (Author) / deLusé, Stephanie (Thesis director) / Fishburne, Kate (Committee member) / School of Politics and Global Studies (Contributor) / Department of Management and Entrepreneurship (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsStein, Derek W (Co-author) / Robinson, Kendall (Co-author) / Goers, Thomas (Co-author) / Byrne, Jared (Thesis director) / Sebold, Brent (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148041-Thumbnail Image.png
Description

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating this large and complex system required the use of various methodologies including: the investigation of the relationships between waste management systems and sustainable development across major companies; literature reviews of scholarly articles about CSR, circular economies, recycling, and releases of company reports on sustainable development and financials. Lastly, interviews and a survey were conducted to gain deeper insight into the problems that make circular economies so difficult to achieve at scale.

ContributorsBird, Alex William (Author) / Heller, Cheryl (Thesis director) / Trujillo, Rhett (Committee member) / Department of Finance (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147810-Thumbnail Image.png
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsGoers, Thomas Lee (Co-author) / Stein, Derek (Co-author) / Robinson, Kendall (Co-author) / Bryne, Jared (Thesis director) / Sebold, Brent (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the

As part of the Founders’ lab program, this thesis explores a social venture idea whose concept is to connect the philanthropic community with individuals and organizations in need of funding a project relating to (Sustainable Development Goals) SDG indicators through a peer to peer donation platform. Through this platform, the philanthropic community will have the possibility to easily access a wide range of projects to support as well as underserved individuals and communities seeking for help, track their impact, donate in a complete transparent donation process, and automate donations through bank card rounds-up. This social venture idea has been named PhilanthroGo.

ContributorsFrank, Gregory Keith (Co-author) / Boeh, Morgan (Co-author) / Veal, Hayley (Co-author) / Byrne, Jared (Thesis director) / Givens, Jessica (Committee member) / Satpathy, Asish (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147893-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsQian, Michael (Co-author) / Cosgrove, Samuel (Co-author) / English, Corinne (Co-author) / Agee, Claire (Co-author) / Mattson, Kyle (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / School of Accountancy (Contributor) / Department of Finance (Contributor) / Department of Information Systems (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147895-Thumbnail Image.png
Description

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts

For our project, we explored the growth of the ASU BioDesign Clinical Testing Laboratory (ABCTL) from a standard university research lab to a COVID-19 testing facility through a business lens. The lab has pioneered the saliva-test in the Western United States. This thesis analyzes the laboratory from various business concepts and aspects. The business agility of the lab and it’s quickness to innovation has allowed the lab to enjoy great success. Looking into the future, the laboratory has a promising future and will need to answer many questions to remain the premier COVID-19 testing institution in Arizona.

ContributorsEnglish, Corinne (Co-author) / Cosgrove, Samuel (Co-author) / Mattson, Kyle (Co-author) / Agee, Claire (Co-author) / Qian, Michael (Co-author) / Compton, Carolyn (Thesis director) / Schneller, Eugene (Committee member) / Department of Information Systems (Contributor) / Department of Supply Chain Management (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05