Matching Items (415)
Filtering by

Clear all filters

148109-Thumbnail Image.png
Description

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment

System and software verification is a vital component in the development and reliability of cyber-physical systems - especially in critical domains where the margin of error is minimal. In the case of autonomous driving systems (ADS), the vision perception subsystem is a necessity to ensure correct maneuvering of the environment and identification of objects. The challenge posed in perception systems involves verifying the accuracy and rigidity of detections. The use of Spatio-Temporal Perception Logic (STPL) enables the user to express requirements for the perception system to verify, validate, and ensure its behavior; however, a drawback to STPL involves its accessibility. It is limited to individuals with an expert or higher-level knowledge of temporal and spatial logics, and the formal-written requirements become quite verbose with more restrictions imposed. In this thesis, I propose a domain-specific language (DSL) catered to Spatio-Temporal Perception Logic to enable non-expert users the ability to capture requirements for perception subsystems while reducing the necessity to have an experienced background in said logic. The domain-specific language for the Spatio-Temporal Perception Logic is built upon the formal language with two abstractions. The main abstraction captures simple programming statements that are translated to a lower-level STPL expression accepted by the testing monitor. The STPL DSL provides a seamless interface to writing formal expressions while maintaining the power and expressiveness of STPL. These translated equivalent expressions are capable of directing a standard for perception systems to ensure the safety and reduce the risks involved in ill-formed detections.

ContributorsAnderson, Jacob (Author) / Fainekos, Georgios (Thesis director) / Yezhou, Yang (Committee member) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148121-Thumbnail Image.png
Description

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is

This thesis proposes hardware and software security enhancements to the robotic explorer of a capstone team, in collaboration with the NASA Psyche Mission Student Collaborations program. The NASA Psyche Mission, launching in 2022 and reaching the metallic asteroid of the same name in 2026, will explore from orbit what is hypothesized to be remnant core material of an early planet, potentially providing key insights to planet formation. Following this initial mission, it is possible there would be scientists and engineers interested in proposing a mission to land an explorer on the surface of Psyche to further document various properties of the asteroid. As a proposal for a second mission, an interdisciplinary engineering and science capstone team at Arizona State University designed and constructed a robotic explorer for the hypothesized surfaces of Psyche, capable of semi-autonomously navigating simulated surfaces to collect scientific data from onboard sensors. A critical component of this explorer is the command and data handling subsystem, and as such, the security of this system, though outside the scope of the capstone project, remains a crucial consideration. This thesis proposes the pairing of Trusted Platform Module (TPM) technology for increased hardware security and the implementation of SELinux (Security Enhanced Linux) for increased software security for Earth-based testing as well as space-ready missions.

ContributorsAnderson, Kelly Joanne (Author) / Bowman, Catherine (Thesis director) / Kozicki, Michael (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147844-Thumbnail Image.png
Description

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded

"No civil discourse, no cooperation; misinformation, mistruth." These were the words of former Facebook Vice President Chamath Palihapitiya who publicly expressed his regret in a 2017 interview over his role in co-creating Facebook. Palihapitiya shared that social media is ripping apart the social fabric of society and he also sounded the alarm regarding social media’s unavoidable global impact. He is only one of social media’s countless critics. The more disturbing issue resides in the empirical evidence supporting such notions. At least 95% of adolescents own a smartphone and spend an average time of two to four hours a day on social media. Moreover, 91% of 16-24-year-olds use social media, yet youth rate Instagram, Facebook, and Twitter as the worst social media platforms. However, the social, clinical, and neurodevelopment ramifications of using social media regularly are only beginning to emerge in research. Early research findings show that social media platforms trigger anxiety, depression, low self-esteem, and other negative mental health effects. These negative mental health symptoms are commonly reported by individuals from of 18-25-years old, a unique period of human development known as emerging adulthood. Although emerging adulthood is characterized by identity exploration, unbounded optimism, and freedom from most responsibilities, it also serves as a high-risk period for the onset of most psychological disorders. Despite social media’s adverse impacts, it retains its utility as it facilitates identity exploration and virtual socialization for emerging adults. Investigating the “user-centered” design and neuroscience underlying social media platforms can help reveal, and potentially mitigate, the onset of negative mental health consequences among emerging adults. Effectively deconstructing the Facebook, Twitter, and Instagram (i.e., hereafter referred to as “The Big Three”) will require an extensive analysis into common features across platforms. A few examples of these design features include: like and reaction counters, perpetual news feeds, and omnipresent banners and notifications surrounding the user’s viewport. Such social media features are inherently designed to stimulate specific neurotransmitters and hormones such as dopamine, serotonin, and cortisol. Identifying such predacious social media features that unknowingly manipulate and highjack emerging adults’ brain chemistry will serve as a first step in mitigating the negative mental health effects of today’s social media platforms. A second concrete step will involve altering or eliminating said features by creating a social media platform that supports and even enhances mental well-being.

ContributorsGupta, Anay (Author) / Flores, Valerie (Thesis director) / Carrasquilla, Christina (Committee member) / Barnett, Jessica (Committee member) / The Sidney Poitier New American Film School (Contributor) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147846-Thumbnail Image.png
Description

Over the course of 2020, individuals and organizations were thrown various unprecedented obstacles that necessitated flexibility, empathy, and understanding. Many organizations were forced to reevaluate their financial status, their purpose, and how they could provide for their employees. The COVID-19 pandemic meant that most companies had to introduce a ‘work

Over the course of 2020, individuals and organizations were thrown various unprecedented obstacles that necessitated flexibility, empathy, and understanding. Many organizations were forced to reevaluate their financial status, their purpose, and how they could provide for their employees. The COVID-19 pandemic meant that most companies had to introduce a ‘work from home’ policy, drastically decreasing the face-to-face contact that employees had with each other and leadership. The virus, coupled with the social and political unrest in the U.S. in the wake of the Black Lives Matter movement and the 2020 presidential election, inspired many companies to reframe their organization and redefine their goals.<br/> The B2B (business-to-business) Marketing Agency, The Mx Group, is preparing for a change in leadership, with the current Chief Executive Officer and Founder stepping down, being replaced by the President of the company. The company plans to execute the transition in the spring of 2022, allowing them the rest of 2021 to plan for the change, catering to employees’ individual and the company’s collective needs. It was also prompted by factors such as the COVID-19 pandemic to reevaluate the values that it upholds as an organization, coinciding with the change in leadership. Leaders of the company are actively encouraging employees to engage with these values by recognizing when a colleague performs in alignment with a value.<br/> In reframing their organization, The Mx Group has a significant opportunity to uniquely position itself in the industry. Lee G. Bolman and Terrence E. Deal (2017) introduced four frames: human resources, symbolic, structural, and political, as a way to guide a transformative application of leadership and management in business. Analyzed from these perspectives, The Mx Group can utilize contemporary ideas to efficiently and effectively seize its opportunity of embedding new values and a change in leadership.

ContributorsLanghorn, Chloe Nicole (Author) / deLusé, Stephanie (Thesis director) / Fishburne, Kate (Committee member) / School of Politics and Global Studies (Contributor) / Department of Management and Entrepreneurship (Contributor) / Department of Finance (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148013-Thumbnail Image.png
Description

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation

In this thesis paper, the mental health consequences of the COVID-19 pandemic are discussed. Chapter 1 discusses what inspired me to write this thesis and follows with a discussion of social isolation during the COVID-19 pandemic. Chapter 2 takes a step back and discusses biological effects of social isolation in general. Chapter 3 discusses the psychological effects of social isolation. Finally, this thesis concludes with a discussion of what can be done to help those experiencing social isolation during the pandemic.

ContributorsHarvey, Kira Rachelle (Author) / Sturgess, Jessica (Thesis director) / Tucker, Derek (Committee member) / School of Music, Dance and Theatre (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148014-Thumbnail Image.png
Description

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus

My research aims to determine the effectiveness of meditation and sleep applications (apps) on the reduction of anxiety and stress in college students, with a focus on sedative piano music. Results showed a significant reduction of stress and anxiety levels in college students when listening to sedative piano music versus non-sedative piano music. Music along with other therapy modalities in meditation and sleep apps show promise in reducing students’ anxiety and stress and promoting their successes.

ContributorsPantha, Bidur (Author) / Brian, Jennifer (Thesis director) / Patten, Kristopher (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148041-Thumbnail Image.png
Description

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating

In the current age of global climate crisis, corporations must confront the rising pressure to mitigate their environmental impacts. The goal of this research paper is to provide corporations with a resource to manage waste through the implementation of a circular economy and by increasing Corporate Social Responsibility (CSR). Navigating this large and complex system required the use of various methodologies including: the investigation of the relationships between waste management systems and sustainable development across major companies; literature reviews of scholarly articles about CSR, circular economies, recycling, and releases of company reports on sustainable development and financials. Lastly, interviews and a survey were conducted to gain deeper insight into the problems that make circular economies so difficult to achieve at scale.

ContributorsBird, Alex William (Author) / Heller, Cheryl (Thesis director) / Trujillo, Rhett (Committee member) / Department of Finance (Contributor) / Department of Management and Entrepreneurship (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148043-Thumbnail Image.png
Description

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of

Automated vehicles are becoming more prevalent in the modern world. Using platoons of automated vehicles can have numerous benefits including increasing the safety of drivers as well as streamlining roadway operations. How individual automated vehicles within a platoon react to each other is essential to creating an efficient method of travel. This paper looks at two individual vehicles forming a platoon and tracks the time headway between the two. Several speed profiles are explored for the following vehicle including a triangular and trapezoidal speed profile. It is discovered that a safety violation occurs during platoon formation where the desired time headway between the vehicles is violated. The aim of this research is to explore if this violation can be eliminated or reduced through utilization of different speed profiles.

ContributorsLarson, Kurt Gregory (Author) / Lou, Yingyan (Thesis director) / Chen, Yan (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147810-Thumbnail Image.png
Description

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is

Human beings have long sought to conquer the unconquerable and to push the boundaries of human endurance. There are few such endeavors more challenging than venturing into the coldest and harshest environments on the planet. The challenges these adventurers face are nearly countless, but one that is often underestimated is the massive risk of dehydration in high mountains and the lack of sufficient technology to meet this important need. Astronauts and mountaineers of NASA's Johnson Space Center have created a technology that solves this problem: a freeze-resistant hydration system that helps stop water from freezing at sub-zero temperatures by using cutting-edge technology and materials science to insulate and heat enough water to prevent dehydration over the course of the day, so that adventurers no longer need to worry about their equipment stopping them. This patented technology is the basis of the founding of Aeropak, an advanced outdoor hydration brand developed by three ASU students (Kendall Robinson, Derek Stein, and Thomas Goers) in collaboration with W.P. Carey’s Founder’s Lab. The primary goal was to develop traction among winter sport enthusiasts to create a robust customer base and evaluate the potential for partnership with hydration solution companies as well as direct sales through online and brick-and-mortar retail avenues. To this end, the Aeropak team performed market research to determine the usefulness and need for the product through a survey sent out to a number of outdoor sporting clubs on Arizona State University’s campus. After determining an interest in a potential product, the team developed a marketing strategy and business model which was executed through Instagram as well as a standalone website, with the goal of garnering interest and traction for a future product. Future goals of the project will be to bring a product to market and expand Aeropak’s reach into a variety of winter sport subcommunities, as well as evaluate the potential for further expansion into large-scale retailers and collaboration with established companies.

ContributorsGoers, Thomas Lee (Co-author) / Stein, Derek (Co-author) / Robinson, Kendall (Co-author) / Bryne, Jared (Thesis director) / Sebold, Brent (Committee member) / Tech Entrepreneurship & Mgmt (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05