Matching Items (9)
Filtering by

Clear all filters

151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
ContributorsMiao, Lifeng (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Thesis advisor) / Zhang, Junshan (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2013
151465-Thumbnail Image.png
Description
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An adaptive framework based on a sequential Bayesian tracking method is proposed to adaptively select the cardiac parameters that minimize the estimation error, thus precluding the need for pre-processing. Simulations using real ECG data from the online Physionet database demonstrate the improvement in performance of the proposed algorithm in accurately estimating critical heart disease parameters. In addition, two new approaches to ECG modeling are presented using the interacting multiple model and the sequential Markov chain Monte Carlo technique with adaptive model selection. Both these methods can adaptively choose between different models for various ECG beat morphologies without requiring prior ECG information, as demonstrated by using real ECG signals. A supervised Bayesian maximum-likelihood (ML) based classifier uses the estimated model parameters to classify different types of cardiac arrhythmias. However, the non-availability of sufficient amounts of representative training data and the large inter-patient variability pose a challenge to the existing supervised learning algorithms, resulting in a poor classification performance. In addition, recently developed unsupervised learning methods require a priori knowledge on the number of diseases to cluster the ECG data, which often evolves over time. In order to address these issues, an adaptive learning ECG classification method that uses Dirichlet process Gaussian mixture models is proposed. This approach does not place any restriction on the number of disease classes, nor does it require any training data. This algorithm is adapted to be patient-specific by labeling or identifying the generated mixtures using the Bayesian ML method, assuming the availability of labeled training data.
ContributorsEdla, Shwetha Reddy (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2012
152344-Thumbnail Image.png
Description
Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.
ContributorsHuff, Daniel W (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Chakrabarti, Chaitali (Committee member) / Chattopadhyay, Aditi (Committee member) / Arizona State University (Publisher)
Created2013
150798-Thumbnail Image.png
Description
Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal

Structural health management (SHM) is emerging as a vital methodology to help engineers improve the safety and maintainability of critical structures. SHM systems are designed to reliably monitor and test the health and performance of structures in aerospace, civil, and mechanical engineering applications. SHM combines multidisciplinary technologies including sensing, signal processing, pattern recognition, data mining, high fidelity probabilistic progressive damage models, physics based damage models, and regression analysis. Due to the wide application of carbon fiber reinforced composites and their multiscale failure mechanisms, it is necessary to emphasize the research of SHM on composite structures. This research develops a comprehensive framework for the damage detection, localization, quantification, and prediction of the remaining useful life of complex composite structures. To interrogate a composite structure, guided wave propagation is applied to thin structures such as beams and plates. Piezoelectric transducers are selected because of their versatility, which allows them to be used as sensors and actuators. Feature extraction from guided wave signals is critical to demonstrate the presence of damage and estimate the damage locations. Advanced signal processing techniques are employed to extract robust features and information. To provide a better estimate of the damage for accurate life estimation, probabilistic regression analysis is used to obtain a prediction model for the prognosis of complex structures subject to fatigue loading. Special efforts have been applied to the extension of SHM techniques on aerospace and spacecraft structures, such as UAV composite wings and deployable composite boom structures. Necessary modifications of the developed SHM techniques were conducted to meet the unique requirements of the aerospace structures. The developed SHM algorithms are able to accurately detect and quantify impact damages as well as matrix cracking introduced.
ContributorsLiu, Yingtao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Rajadas, John (Committee member) / Dai, Lenore (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2012
135845-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Department of Military Science (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136138-Thumbnail Image.png
Description
This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography

This thesis encompasses research performed in the focus area of structural health monitoring. More specifically, this research focuses on high velocity impact testing of carbon fiber reinforced structures, especially plates, and evaluating the damage post-impact. To this end, various non-destructive evaluation techniques such as ultrasonic C-scan testing and flash thermography were utilized for post-impact analysis. MATLAB algorithms were written and refined for the localization and quantification of damage in plates using data from sensors such as piezoelectric and fiber Bragg gratings sensors. Throughout the thesis, the general plate theory and laminate plate theory, the operations and optimization of the gas gun, and the theory used for the damage localization algorithms will be discussed. Additional quantifiable results are to come in future semesters of experimentation, but this thesis outlines the framework upon which all the research will continue to advance.
ContributorsMccrea, John Patrick (Author) / Chattopadhyay, Aditi (Thesis director) / Borkowski, Luke (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor) / Department of Military Science (Contributor)
Created2015-05
153633-Thumbnail Image.png
Description
Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a

Advanced aerospace materials, including fiber reinforced polymer and ceramic matrix composites, are increasingly being used in critical and demanding applications, challenging the current damage prediction, detection, and quantification methodologies. Multiscale computational models offer key advantages over traditional analysis techniques and can provide the necessary capabilities for the development of a comprehensive virtual structural health monitoring (SHM) framework. Virtual SHM has the potential to drastically improve the design and analysis of aerospace components through coupling the complementary capabilities of models able to predict the initiation and propagation of damage under a wide range of loading and environmental scenarios, simulate interrogation methods for damage detection and quantification, and assess the health of a structure. A major component of the virtual SHM framework involves having micromechanics-based multiscale composite models that can provide the elastic, inelastic, and damage behavior of composite material systems under mechanical and thermal loading conditions and in the presence of microstructural complexity and variability. Quantification of the role geometric and architectural variability in the composite microstructure plays in the local and global composite behavior is essential to the development of appropriate scale-dependent unit cells and boundary conditions for the multiscale model. Once the composite behavior is predicted and variability effects assessed, wave-based SHM simulation models serve to provide knowledge on the probability of detection and characterization accuracy of damage present in the composite. The research presented in this dissertation provides the foundation for a comprehensive SHM framework for advanced aerospace materials. The developed models enhance the prediction of damage formation as a result of ceramic matrix composite processing, improve the understanding of the effects of architectural and geometric variability in polymer matrix composites, and provide an accurate and computational efficient modeling scheme for simulating guided wave excitation, propagation, interaction with damage, and sensing in a range of materials. The methodologies presented in this research represent substantial progress toward the development of an accurate and generalized virtual SHM framework.
ContributorsBorkowski, Luke (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Mignolet, Marc (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2015
154967-Thumbnail Image.png
Description
Biological and biomedical measurements, when adequately analyzed and processed, can be used to impart quantitative diagnosis during primary health care consultation to improve patient adherence to recommended treatments. For example, analyzing neural recordings from neurostimulators implanted in patients with neurological disorders can be used by a physician to adjust detrimental

Biological and biomedical measurements, when adequately analyzed and processed, can be used to impart quantitative diagnosis during primary health care consultation to improve patient adherence to recommended treatments. For example, analyzing neural recordings from neurostimulators implanted in patients with neurological disorders can be used by a physician to adjust detrimental stimulation parameters to improve treatment. As another example, biosequences, such as sequences from peptide microarrays obtained from a biological sample, can potentially provide pre-symptomatic diagnosis for infectious diseases when processed to associate antibodies to specific pathogens or infectious agents. This work proposes advanced statistical signal processing and machine learning methodologies to assess neurostimulation from neural recordings and to extract diagnostic information from biosequences.

For locating specific cognitive and behavioral information in different regions of the brain, neural recordings are processed using sequential Bayesian filtering methods to detect and estimate both the number of neural sources and their corresponding parameters. Time-frequency based feature selection algorithms are combined with adaptive machine learning approaches to suppress physiological and non-physiological artifacts present in neural recordings. Adaptive processing and unsupervised clustering methods applied to neural recordings are also used to suppress neurostimulation artifacts and classify between various behavior tasks to assess the level of neurostimulation in patients.

For pathogen detection and identification, random peptide sequences and their properties are first uniquely mapped to highly-localized signals and their corresponding parameters in the time-frequency plane. Time-frequency signal processing methods are then applied to estimate antigenic determinants or epitope candidates for detecting and identifying potential pathogens.
ContributorsMaurer, Alexander Joseph (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel (Committee member) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016
157748-Thumbnail Image.png
Description
The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the

The problem of multiple object tracking seeks to jointly estimate the time-varying cardinality and trajectory of each object. There are numerous challenges that are encountered in tracking multiple objects including a time-varying number of measurements, under varying constraints, and environmental conditions. In this thesis, the proposed statistical methods integrate the use of physical-based models with Bayesian nonparametric methods to address the main challenges in a tracking problem. In particular, Bayesian nonparametric methods are exploited to efficiently and robustly infer object identity and learn time-dependent cardinality; together with Bayesian inference methods, they are also used to associate measurements to objects and estimate the trajectory of objects. These methods differ from the current methods to the core as the existing methods are mainly based on random finite set theory.

The first contribution proposes dependent nonparametric models such as the dependent Dirichlet process and the dependent Pitman-Yor process to capture the inherent time-dependency in the problem at hand. These processes are used as priors for object state distributions to learn dependent information between previous and current time steps. Markov chain Monte Carlo sampling methods exploit the learned information to sample from posterior distributions and update the estimated object parameters.

The second contribution proposes a novel, robust, and fast nonparametric approach based on a diffusion process over infinite random trees to infer information on object cardinality and trajectory. This method follows the hierarchy induced by objects entering and leaving a scene and the time-dependency between unknown object parameters. Markov chain Monte Carlo sampling methods integrate the prior distributions over the infinite random trees with time-dependent diffusion processes to update object states.

The third contribution develops the use of hierarchical models to form a prior for statistically dependent measurements in a single object tracking setup. Dependency among the sensor measurements provides extra information which is incorporated to achieve the optimal tracking performance. The hierarchical Dirichlet process as a prior provides the required flexibility to do inference. Bayesian tracker is integrated with the hierarchical Dirichlet process prior to accurately estimate the object trajectory.

The fourth contribution proposes an approach to model both the multiple dependent objects and multiple dependent measurements. This approach integrates the dependent Dirichlet process modeling over the dependent object with the hierarchical Dirichlet process modeling of the measurements to fully capture the dependency among both object and measurements. Bayesian nonparametric models can successfully associate each measurement to the corresponding object and exploit dependency among them to more accurately infer the trajectory of objects. Markov chain Monte Carlo methods amalgamate the dependent Dirichlet process with the hierarchical Dirichlet process to infer the object identity and object cardinality.

Simulations are exploited to demonstrate the improvement in multiple object tracking performance when compared to approaches that are developed based on random finite set theory.
ContributorsMoraffah, Bahman (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Bliss, Daniel W. (Committee member) / Richmond, Christ D. (Committee member) / Dasarathy, Gautam (Committee member) / Arizona State University (Publisher)
Created2019