Matching Items (4)
Filtering by

Clear all filters

151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
ContributorsMiao, Lifeng (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Thesis advisor) / Zhang, Junshan (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2013
150929-Thumbnail Image.png
Description
This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important

This thesis examines the application of statistical signal processing approaches to data arising from surveys intended to measure psychological and sociological phenomena underpinning human social dynamics. The use of signal processing methods for analysis of signals arising from measurement of social, biological, and other non-traditional phenomena has been an important and growing area of signal processing research over the past decade. Here, we explore the application of statistical modeling and signal processing concepts to data obtained from the Global Group Relations Project, specifically to understand and quantify the effects and interactions of social psychological factors related to intergroup conflicts. We use Bayesian networks to specify prospective models of conditional dependence. Bayesian networks are determined between social psychological factors and conflict variables, and modeled by directed acyclic graphs, while the significant interactions are modeled as conditional probabilities. Since the data are sparse and multi-dimensional, we regress Gaussian mixture models (GMMs) against the data to estimate the conditional probabilities of interest. The parameters of GMMs are estimated using the expectation-maximization (EM) algorithm. However, the EM algorithm may suffer from over-fitting problem due to the high dimensionality and limited observations entailed in this data set. Therefore, the Akaike information criterion (AIC) and the Bayesian information criterion (BIC) are used for GMM order estimation. To assist intuitive understanding of the interactions of social variables and the intergroup conflicts, we introduce a color-based visualization scheme. In this scheme, the intensities of colors are proportional to the conditional probabilities observed.
ContributorsLiu, Hui (Author) / Taylor, Thomas (Thesis advisor) / Cochran, Douglas (Thesis advisor) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2012
157816-Thumbnail Image.png
Description
This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the

This dissertation studies load balancing algorithms for many-server systems (with N servers) and focuses on the steady-state performance of load balancing algorithms in the heavy traffic regime. The framework of Stein’s method and (iterative) state-space collapse (SSC) are used to analyze three load balancing systems: 1) load balancing in the Sub-Halfin-Whitt regime with exponential service time; 2) load balancing in the Beyond-Halfin-Whitt regime with exponential service time; 3) load balancing in the Sub-Halfin-Whitt regime with Coxian-2 service time.

When in the Sub-Halfin-Whitt regime, the sufficient conditions are established such that any load balancing algorithm that satisfies the conditions have both asymptotic zero waiting time and zero waiting probability. Furthermore, the number of servers with more than one jobs is o(1), in other words, the system collapses to a one-dimensional space. The result is proven using Stein’s method and state space collapse (SSC), which are powerful mathematical tools for steady-state analysis of load balancing algorithms. The second system is in even “heavier” traffic regime, and an iterative refined procedure is proposed to obtain the steady-state metrics. Again, asymptotic zero delay and waiting are established for a set of load balancing algorithms. Different from the first system, the system collapses to a two-dimensional state-space instead of one-dimensional state-space. The third system is more challenging because of “non-monotonicity” with Coxian-2 service time, and an iterative state space collapse is proposed to tackle the “non-monotonicity” challenge. For these three systems, a set of load balancing algorithms is established, respectively, under which the probability that an incoming job is routed to an idle server is one asymptotically at steady-state. The set of load balancing algorithms includes join-the-shortest-queue (JSQ), idle-one-first(I1F), join-the-idle-queue (JIQ), and power-of-d-choices (Pod) with a carefully-chosen d.
ContributorsLiu, Xin (Author) / Ying, Lei (Thesis advisor) / Maguluri, Siva Theja (Committee member) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2019
158599-Thumbnail Image.png
Description
This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm, and uses the Kalman filter and

This dissertation presents a novel algorithm for recovering missing values of co-evolving time series with partial embedded network information. The idea is to connect two sources of data through a shared low dimensional latent space. The proposed algorithm, named NetDyna, is an Expectation-Maximization algorithm, and uses the Kalman filter and matrix factorization approaches to infer the missing values both in the time series and embedded network. The experimental results on real datasets, including a Motes dataset and a Motion Capture dataset, show that (1) NetDyna outperforms other state-of-the-art algorithms, especially with partially observed network information; (2) its computational complexity scales linearly with the time duration of time series; and (3) the algorithm recovers the embedded network in addition to missing time series values.

This dissertation also studies a load balancing algorithm, the so called power-of-two-choices(Po2), for many-server systems (with N servers) and focuses on the convergence of stationary distribution of Po2 in the both light and heavy traffic regimes to the solution of mean-field system. The framework of Stein’s method and state space collapse (SSC) are used to analyze both regimes.

In both regimes, the thesis first uses the argument of state space collapse to show that the probability of the state being far from the mean-field solution is small enough. By a simple Markov inequality, it is able to show that the probability is indeed very small with a proper choice of parameters.

Then, for the state space close to the solution of mean-field model, the thesis uses Stein’s method to show that the stochastic system is close to a linear mean-field model. By characterizing the generator difference, it is able to characterize the dominant terms in both regimes. Note that for heavy traffic case, the lower and upper bound analysis of a tridiagonal matrix, which arises from the linear mean-field model, is needed. From the dominant term, it allows to calculate the coefficient of the convergence rate.

In the end, comparisons between the theoretical predictions and numerical simulations are presented.
ContributorsHairi, FNU (Author) / Ying, Lei (Thesis advisor) / Wang, Weina (Committee member) / Zhang, Junshan (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2020