Matching Items (230)
Filtering by

Clear all filters

152234-Thumbnail Image.png
Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152179-Thumbnail Image.png
Description
As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.
ContributorsRaji Kermani, Ramtin (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2013
151787-Thumbnail Image.png
Description
Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation

Electromyogram (EMG)-based control interfaces are increasingly used in robot teleoperation, prosthetic devices control and also in controlling robotic exoskeletons. Over the last two decades researchers have come up with a plethora of decoding functions to map myoelectric signals to robot motions. However, this requires a lot of training and validation data sets, while the parameters of the decoding function are specific for each subject. In this thesis we propose a new methodology that doesn't require training and is not user-specific. The main idea is to supplement the decoding functional error with the human ability to learn inverse model of an arbitrary mapping function. We have shown that the subjects gradually learned the control strategy and their learning rates improved. We also worked on identifying an optimized control scheme that would be even more effective and easy to learn for the subjects. Optimization was done by taking into account that muscles act in synergies while performing a motion task. The low-dimensional representation of the neural activity was used to control a two-dimensional task. Results showed that in the case of reduced dimensionality mapping, the subjects were able to learn to control the device in a slower pace, however they were able to reach and retain the same level of controllability. To summarize, we were able to build an EMG-based controller for robot devices that would work for any subject, without any training or decoding function, suggesting human-embedded controllers for robotic devices.
ContributorsAntuvan, Chris Wilson (Author) / Artemiadis, Panagiotis (Thesis advisor) / Muthuswamy, Jitendran (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
151674-Thumbnail Image.png
Description
This study investigates the effectiveness of the use of Concept-Based Instruction (CBI) to facilitate the acquisition of Spanish mood distinctions by second semester second language learners of Spanish. The study focuses on the development of Spanish mood choice and the types of explanations (Rule-of-Thumb vs. Concept-based) used by five students

This study investigates the effectiveness of the use of Concept-Based Instruction (CBI) to facilitate the acquisition of Spanish mood distinctions by second semester second language learners of Spanish. The study focuses on the development of Spanish mood choice and the types of explanations (Rule-of-Thumb vs. Concept-based) used by five students before and after being exposed to Concept-Based Instruction regarding the choice of Spanish mood following various modalities .The students in this study were presented with a pedagogical treatment on Spanish mood choice that included general theoretical concepts based on Gal'perin's (1969, 1992) didactic models and acts of verbalization, which form part of a Concept-Based pedagogical approach. In order to ascertain the effectiveness of the use of concept-based tools to promote the ability to use Spanish mood appropriately over time, a pre and post-test was administered to the group in which students were asked to respond to prompts containing modalities that elicit the indicative and subjunctive moods, indicate their level of confidence in their response, and verbalize in writing a reason for their choice. The development of these abilities in learners exposed to CBI was assessed by comparing pre and post-test scores examining both forms and explanations for the indicative and subjunctive modality prompts given. Results showed that students continued to rely on Rule-of-Thumb explanations of mood choice but they did expand their use of conceptually-based reasoning. Although the quantitative and qualitative analyses of the results indicate that most students did improve their ability to make appropriate mood choices (forms and explanations) after the CBI treatment, the increased use of conceptually-based explanations for their mood choices led to both correct and incorrect responses.
ContributorsBeus, Eric (Author) / Lafford, Barbara (Thesis advisor) / Beas, Omar (Committee member) / Cerron-Palomino, Alvaro (Committee member) / Arizona State University (Publisher)
Created2013
151461-Thumbnail Image.png
Description
Time adolescents spend in organized or informal skill based activities after school is associated with a variety of positive developmental outcomes. Little is known about how siblings might shape adolescents' motivation to participate in after-school activities. The current study applied the expectancy value model and ecological theory to understand if

Time adolescents spend in organized or informal skill based activities after school is associated with a variety of positive developmental outcomes. Little is known about how siblings might shape adolescents' motivation to participate in after-school activities. The current study applied the expectancy value model and ecological theory to understand if sibling behaviors were related to adolescents' after-school activities for 34 Mexican origin families. Qualitative and quantitative results suggested siblings engaged in five promoting behaviors (i.e., support, provider of information, role modeling, comparison, co-participation) and three inhibiting behaviors (i.e., babysitting, transportation, and negativity) towards adolescent activity participation. Furthermore, sibling behaviors differed by adolescent characteristics (i.e., cultural orientation, familism, and neighborhood) and sibling characteristics (i.e., gender, age). The results provide evidence of the various promoting and inhibiting socialization behaviors sibling might use to influence adolescents' activity motivation.
ContributorsPrice, Chara Dale (Author) / Simpkins, Sandra (Thesis advisor) / Updegraff, Kimberly (Committee member) / Menjivar, Cecilia (Committee member) / Arizona State University (Publisher)
Created2012
151510-Thumbnail Image.png
Description
Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified

Tolerances on line profiles are used to control cross-sectional shapes of parts, such as turbine blades. A full life cycle for many mechanical devices depends (i) on a wise assignment of tolerances during design and (ii) on careful quality control of the manufacturing process to ensure adherence to the specified tolerances. This thesis describes a new method for quality control of a manufacturing process by improving the method used to convert measured points on a part to a geometric entity that can be compared directly with tolerance specifications. The focus of this paper is the development of a new computational method for obtaining the least-squares fit of a set of points that have been measured with a coordinate measurement machine along a line-profile. The pseudo-inverse of a rectangular matrix is used to convert the measured points to the least-squares fit of the profile. Numerical examples are included for convex and concave line-profiles, that are formed from line- and circular arc-segments.
ContributorsSavaliya, Samir (Author) / Davidson, Joseph K. (Thesis advisor) / Shah, Jami J. (Committee member) / Santos, Veronica J (Committee member) / Arizona State University (Publisher)
Created2013
151521-Thumbnail Image.png
Description
This study was designed to influence consumer habits, specifically those relating to purchases of fruits, vegetables, and junk food. Previous studies have clearly shown the ineffectiveness of simply describing the health benefits of eating more fruits and vegetables (F/V). In contrast, this study aimed to change the result by changing

This study was designed to influence consumer habits, specifically those relating to purchases of fruits, vegetables, and junk food. Previous studies have clearly shown the ineffectiveness of simply describing the health benefits of eating more fruits and vegetables (F/V). In contrast, this study aimed to change the result by changing the message: providing participants with insight into the hidden agendas of food companies and grocery stores, provide useful tips on how to include children when selecting F/V, and emphasizing the importance of parental modeling in regard to food purchases. Participants of this study were separated into two groups, the tour group and the education group. The tour group was guided through a grocery store where they learned about sales tactics and manipulations used by grocery stores and food companies to influence purchases. Education group participants were provided with an education session focusing on USDA and FDA handouts displaying current educational suggestions for increasing F/V consumption. Grocery store receipts were collected and analyzed to track the progress of both groups. The goal of the study was to identify a method of informing consumers that will produce a significant change in behavior. Increasing F/V consumption, even in relatively small amounts, would be an important step forward in improving the diet and overall health of Americans. This study was the first of its kind to measure purchasing patterns objectively (through analysis of purchase receipts, rather than personal opinion/evaluation surveys) and in a wide-scope retail environment that includes all grocery store purchases by participants. Significant increases or decreases in the amount of money spent on F/V, or the amount (pounds) of F/V purchased were not seen, however a small correlation (r = 0.133) exists when comparing the weight of F/V purchased pre/post intervention. Data from Food Frequency Questionnaires shows participants consuming significantly higher amounts of F/V post intervention (p=0.043). The tour group and education group experienced an average increase of 0.7 servings per day. Future interventions might benefit by extending their scope to include cooking demonstrations, in-home interventions, and education on healthy eating outside of the home.
ContributorsKinsfather, Diana (Author) / Johnston, Carol (Thesis advisor) / Hekler, Eric (Committee member) / Tetreault, Colin (Committee member) / Arizona State University (Publisher)
Created2013
152536-Thumbnail Image.png
Description
As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object

As robotic systems are used in increasingly diverse applications, the interaction of humans and robots has become an important area of research. In many of the applications of physical human robot interaction (pHRI), the robot and the human can be seen as cooperating to complete a task with some object of interest. Often these applications are in unstructured environments where many paths can accomplish the goal. This creates a need for the ability to communicate a preferred direction of motion between both participants in order to move in coordinated way. This communication method should be bidirectional to be able to fully utilize both the robot and human capabilities. Moreover, often in cooperative tasks between two humans, one human will operate as the leader of the task and the other as the follower. These roles may switch during the task as needed. The need for communication extends into this area of leader-follower switching. Furthermore, not only is there a need to communicate the desire to switch roles but also to control this switching process. Impedance control has been used as a way of dealing with some of the complexities of pHRI. For this investigation, it was examined if impedance control can be utilized as a way of communicating a preferred direction between humans and robots. The first set of experiments tested to see if a human could detect a preferred direction of a robot by grasping and moving an object coupled to the robot. The second set tested the reverse case if the robot could detect the preferred direction of the human. The ability to detect the preferred direction was shown to be up to 99% effective. Using these results, a control method to allow a human and robot to switch leader and follower roles during a cooperative task was implemented and tested. This method proved successful 84% of the time. This control method was refined using adaptive control resulting in lower interaction forces and a success rate of 95%.
ContributorsWhitsell, Bryan (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Santos, Veronica (Committee member) / Arizona State University (Publisher)
Created2014
152324-Thumbnail Image.png
Description
With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human

With robots being used extensively in various areas, a certain degree of robot autonomy has always been found desirable. In applications like planetary exploration, autonomous path planning and navigation are considered essential. But every now and then, a need to modify the robot's operation arises, a need for a human to provide it some supervisory parameters that modify the degree of autonomy or allocate extra tasks to the robot. In this regard, this thesis presents an approach to include a provision to accept and incorporate such human inputs and modify the navigation functions of the robot accordingly. Concepts such as applying kinematical constraints while planning paths, traversing of unknown areas with an intent of maximizing field of view, performing complex tasks on command etc. have been examined and implemented. The approaches have been tested in Robot Operating System (ROS), using robots such as the iRobot Create, Personal Robotics (PR2) etc. Simulations and experimental demonstrations have proved that this approach is feasible for solving some of the existing problems and that it certainly can pave way to further research for enhancing functionality.
ContributorsVemprala, Sai Hemachandra (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013