Matching Items (2)
Filtering by

Clear all filters

191034-Thumbnail Image.png
Description
This research will utilize the energy and poverty alleviation framework to investigate a sustainable energy ecosystem for the Wakapoa indigenous community of Guyana. Five questions guide the research – 1) Is there an energy access-development nexus? 2) Can the relationships and trends between key development indicators and electricity access

This research will utilize the energy and poverty alleviation framework to investigate a sustainable energy ecosystem for the Wakapoa indigenous community of Guyana. Five questions guide the research – 1) Is there an energy access-development nexus? 2) Can the relationships and trends between key development indicators and electricity access guide policymakers on development activities? 3) Can small-scale concentrated solar and biomass systems provide adequate electrical power to meet the Wakapoa community's domestic and commercial loads economically? 4) What added social value could be generated from the energy system as per Wakapoa context? and 5) What governance systems can be considered to facilitate a sustainable energy ecosystem? In addressing questions 1 and 2, the research collected secondary data on selected countries' key development indexes from the World Bank and Our World in Data. Datasets include the human development index, human capital index, gross domestic product per capita, gross national income per capita, and electricity access. In addressing questions 3 to 5, the research utilized the convergent research design methods, where an inclusive data collection process targeted fifty (50) community residents as survey participants. Statistical analysis of the survey data proved useful in identifying the community needs for the renewable energy system design options utilizing system advisor model (SAM) software, identifying key economic activities that can add social value to the community, and giving key insight into governance practices preferred by the community. Key findings reveal that electricity access exerts a strong and moderate influence on key development indicators, the concentrated solar power and biomass hybrid system can satisfy the electricity demand of the community at the Tier-5 level that can support many traditional and non-traditional economic activities, while key governance support functions such as the community financial aid fund and community management committee can enhance the sustainability of the various operations as well as residents' well-being and livelihood. Future research can address project financing, community productive capacity, and the marketing of goods and services to promote a sustainable energy ecosystem.
ContributorsKanhai, Mahendra N. (Author) / Chhetri, Nalini (Thesis advisor) / Dirks, Gary (Thesis advisor) / Miller, Clark (Committee member) / Stechel, Ellen (Committee member) / Arizona State University (Publisher)
Created2023
Description

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1

Shade plays an important role in designing pedestrian-friendly outdoor spaces in hot desert cities. This study investigates the impact of photovoltaic canopy shade and tree shade on thermal comfort through meteorological observations and field surveys at a pedestrian mall on Arizona State University's Tempe campus. During the course of 1 year, on selected clear calm days representative of each season, we conducted hourly meteorological transects from 7:00 a.m. to 6:00 p.m. and surveyed 1284 people about their thermal perception, comfort, and preferences. Shade lowered thermal sensation votes by approximately 1 point on a semantic differential 9-point scale, increasing thermal comfort in all seasons except winter. Shade type (tree or solar canopy) did not significantly impact perceived comfort, suggesting that artificial and natural shades are equally efficient in hot dry climates. Globe temperature explained 51 % of the variance in thermal sensation votes and was the only statistically significant meteorological predictor. Important non-meteorological factors included adaptation, thermal comfort vote, thermal preference, gender, season, and time of day. A regression of subjective thermal sensation on physiological equivalent temperature yielded a neutral temperature of 28.6 °C. The acceptable comfort range was 19.1 °C-38.1 °C with a preferred temperature of 20.8 °C. Respondents exposed to above neutral temperature felt more comfortable if they had been in air-conditioning 5 min prior to the survey, indicating a lagged response to outdoor conditions. Our study highlights the importance of active solar access management in hot urban areas to reduce thermal stress.

ContributorsMiddel, Ariane (Author) / Selover, Nancy (Author) / Hagen, Bjorn (Author) / Chhetri, Nalini (Author)
Created2015-04-13