Matching Items (3)
Filtering by

Clear all filters

151409-Thumbnail Image.png
Description
Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions

Recently there has been an increase in the number of people calling for the incorporation of relevant mathematics in the mathematics classroom. Unfortunately, various researchers define the term relevant mathematics differently, establishing several ideas of how relevancy can be incorporated into the classroom. The differences between mathematics education researchers' definitions of relevant and the way they believe relevant math should be implemented in the classroom, leads one to conclude that a similarly varied set of perspectives probably exists between teachers and students as well. The purpose of this exploratory study focuses on how the student and teacher perspectives on relevant mathematics in the classroom converge or diverge. Specifically, do teachers and students see the same lessons, materials, content, and approach as relevant? A survey was conducted with mathematics teachers at a suburban high school and their algebra 1 and geometry students to provide a general idea of their views on relevant mathematics. An analysis of the findings revealed three major differences: the discrepancy between frequency ratings of teachers and students, the differences between how teachers and students defined the term relevance and how the students' highest rated definitions were the least accounted for among the teacher generated questions, and finally the impact of differing attitudes towards mathematics on students' feelings towards its relevance.
ContributorsRedman, Alexandra P (Author) / Middleton, James (Thesis advisor) / Sloane, Finbarr (Committee member) / Blumenfeld-Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2012
152858-Thumbnail Image.png
Description
This study investigated the current state of the U.S. and Chinese urban middle school math teachers' pedagogical content knowledge (PCK) for the topic of functions. A comparative, descriptive case study was employed to capture the PCK of 23 teachers in Arizona and of 28 teachers in Beijing, regarding their instructional

This study investigated the current state of the U.S. and Chinese urban middle school math teachers' pedagogical content knowledge (PCK) for the topic of functions. A comparative, descriptive case study was employed to capture the PCK of 23 teachers in Arizona and of 28 teachers in Beijing, regarding their instructional knowledge, understanding of student thinking and curricular knowledge--three key components based on Shulman's conceptualization of PCK--related to functions. Cross-case comparisons were used to analyze the PCK of teacher groups across countries and socio-economic statuses (SES), based on the questionnaire, lesson plan, and interview data.

This study finds that despite cultural differences, teachers are likely to share some commonalities with respect to their instructional decisions, understanding of student thinking and curricular knowledge. These similarities may reflect the convergence in teaching practice in the U.S. and China and the dedication the two countries make in improving math education. This study also finds the cross-country differences and cross-SES differences regarding teachers' PCK. On the one hand, the U.S. and Chinese math teachers of this study tend to diverge in valuing different forms of representations, explaining student misconceptions, and relating functions to other math topics. Teachers' own understanding of functions (and mathematics), standards, and high-stakes testing in each country significantly influence their PCK. On the other hand, teachers from the higher SES schools are more likely to show higher expectations for and stronger confidence in their students' mathematical skills compared to their counterparts from the lower SES schools. Teachers' differential beliefs in students' ability levels significantly contribute to their differences between socio-economic statuses.
ContributorsZou, Hui (Author) / Fischman, Gustavo (Thesis advisor) / Berliner, David (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2014
149628-Thumbnail Image.png
Description
The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to

The focus of the study was to identify secondary school students' difficulties with aspects of linearity and linear functions, and to assess their teachers' understanding of the nature of the difficulties experienced by their students. A cross-sectional study with 1561 Grades 8-10 students enrolled in mathematics courses from Pre-Algebra to Algebra II, and their 26 mathematics teachers was employed. All participants completed the Mini-Diagnostic Test (MDT) on aspects of linearity and linear functions, ranked the MDT problems by perceived difficulty, and commented on the nature of the difficulties. Interviews were conducted with 40 students and 20 teachers. A cluster analysis revealed the existence of two groups of students, Group 0 enrolled in courses below or at their grade level, and Group 1 enrolled in courses above their grade level. A factor analysis confirmed the importance of slope and the Cartesian connection for student understanding of linearity and linear functions. There was little variation in student performance on the MDT across grades. Student performance on the MDT increased with more advanced courses, mainly due to Group 1 student performance. The most difficult problems were those requiring identification of slope from the graph of a line. That difficulty persisted across grades, mathematics courses, and performance groups (Group 0, and 1). A comparison of student ranking of MDT problems by difficulty and their performance on the MDT, showed that students correctly identified the problems with the highest MDT mean scores as being least difficult for them. Only Group 1 students could identify some of the problems with lower MDT mean scores as being difficult. Teachers did not identify MDT problems that posed the greatest difficulty for their students. Student interviews confirmed difficulties with slope and the Cartesian connection. Teachers' descriptions of problem difficulty identified factors such as lack of familiarity with problem content or context, problem format and length. Teachers did not identify student difficulties with slope in a geometric context.
ContributorsPostelnicu, Valentina (Author) / Greenes, Carole (Thesis advisor) / Pambuccian, Victor (Committee member) / Sloane, Finbarr (Committee member) / Arizona State University (Publisher)
Created2011