Matching Items (5)
Filtering by

Clear all filters

137035-Thumbnail Image.png
Description
Objective: Fewer than 50% of female college freshmen meet physical activity (PA) guidelines. Innovative approaches that help college women increase their PA are warranted. The study purpose was to pilot test a magazine-based discussion group for improving PA, self-worth, and nutrition behaviors in freshmen college females. Method: Thirty-seven women (18-20

Objective: Fewer than 50% of female college freshmen meet physical activity (PA) guidelines. Innovative approaches that help college women increase their PA are warranted. The study purpose was to pilot test a magazine-based discussion group for improving PA, self-worth, and nutrition behaviors in freshmen college females. Method: Thirty-seven women (18-20 years) were randomized to intervention (n=17) and control (n=20) groups. The intervention group participated in an 8-week magazine-based discussion group adapted from a previously tested social cognitive theory based intervention, Fit Minded. Excerpts from a popular women's health magazine were discussed during weekly meetings incorporating PA, self-worth and nutrition education. The control group did not attend meetings, but received the magazines. Outcomes and feasibility measures included: self-reported PA, general self-worth, knowledge self-worth, self-efficacy, social support, and daily fruits, vegetables, junk food, sugar-sweetened beverage consumption. Results: Twelve participants from the intervention group attended more than 75% of meetings. A time effect was observed for PA (p=0.001) and family social support (p=0.002). Time x group effects were observed for PA (p=0.001), general self-worth (p=0.04), knowledge self-worth (p=0.03), and daily sugar-sweetened beverage consumption (p=0.03), with the intervention group reporting greater increases in PA, general self-worth and knowledge self-worth and greater decreases in daily sugar-sweetened beverage consumption. Although not significant, the intervention group demonstrated positive trends in self-efficacy, friend social support and fruit and veggie consumption as compared to the control group. Conclusion: A magazine-based discussion group may provide a promising platform to improve PA, self-worth and nutrition behaviors in female college freshmen.
ContributorsPellitteri, Katelyn (Author) / Huberty, Jennifer (Thesis director) / Bruening, Meg (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Social Transformation (Contributor) / Sandra Day O'Connor College of Law (Contributor)
Created2014-05
136975-Thumbnail Image.png
Description
Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the

Dengue virus infects millions of people every year. Yet there is still no vaccine available to prevent it. Here we use a neutralizing epitope determinant on the dengue envelope (E) protein as an immunogen to be vectored by a measles virus (MV) vaccine. However the domain III (DIII) of the dengue 2 E protein is too small to be immunogenic by itself. In order for it to be displayed on a larger particle, it was inserted into the amino terminus of small hepatitis B surface antigen (HBsAg, S) coding sequence. To generate the recombinant MV vector and verify the efficiency of this concept, a reverse genetics system was used where the MV vectors express one or two additional transcription units to direct the assembly of hybrid HBsAg particles. Two types of recombinant measles virus were produced: pB(+)MVvac2(DIII-S,S)P and pB(+)MVvac2(DIII-S)N. Virus recovered from pB(+)MVvac2(DIII-S,S)P was viable. An ELISA assay was performed to demonstrate the expression and secretion of HBsAg. Supernatant from MVvac2(DIII-S,S)P infected cells confirmed that hybrid HBsAg-domain III particles with a density similar to traditional HBsAg particles were released. Characteristics of the subviral particle have been analyzed for the successful incorporation of domain III. The replication fitness of the recombinant MV was evaluated using multi-step growth kinetics and showed reduced replication fitness when compared to the parental strain MVvac2. This demonstrates that viral replication is hindered by the addition of the two inserts into MV genome. Further analysis of MVvac2(DIII-S)N is needed to justify immune response studies in a small animal model using both of the generated recombinant vectors.
ContributorsHarahap, Indira Saridewi (Author) / Reyes del Valle, Jorge (Thesis director) / Hogue, Brenda (Committee member) / Misra, Rajeev (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Human Evolution and Social Change (Contributor) / School of Life Sciences (Contributor)
Created2014-05
137660-Thumbnail Image.png
Description
Cardiovascular disease (CVD) is the primary killer of Americans. As such, alternative means of a dietary approach to preventing or mitigating the development of CVD is clearly needed in addition to the ongoing recommendation for increased consumption of fruits and vegetables. Many studies suggest that fungi have the potential

Cardiovascular disease (CVD) is the primary killer of Americans. As such, alternative means of a dietary approach to preventing or mitigating the development of CVD is clearly needed in addition to the ongoing recommendation for increased consumption of fruits and vegetables. Many studies suggest that fungi have the potential to decrease morbidity and mortality associated with CVD. Specifically, white button mushrooms, viz., Agaricus bisporus, are fairly common and inexpensive and full of untapped possibilities for efficacy although much additional research is needed. With antioxidants, e.g., selenium, and beta-glucans, viz., indigestible polysaccharides, white button mushrooms contain a plethora of bioactive ingredients that confer a potentially strong tool against the debilitating social impact of CVD.
The objective of this thesis was to establish protocols and a valid experimental design for testing whether dietary mushrooms could, in fact, be protective against CVD risk. Specifically, a case-study approach was used to validate this experimental method to test white button mushrooms and their impact on blood lipid levels and the inflammatory response. This dietary study involved preparation of two soups: a placebo, broth-based soup and one with one cup of white button mushrooms per cup of soup to provide one and a half cups of soup (and mushrooms) per day to each participant. The soup was prepared in The Kitchen Café at the ASU Downtown Campus (Phoenix, AZ).
After preparing the soup, the next goal was recruitment through listserv, local advertisements, flyers, and word of mouth of participants to test the overall plan. Over fifteen people responded; however, only one candidate met the inclusion criteria of someone at high risk of developing CVD and agreed to participate in the study. The participant visited the nutrition laboratory in downtown Phoenix (550 N. 5th Street). Anthropometric data and an initial blood draw were completed, and fourteen 1.5 cup containers of mushroom soup were dispensed to the participant. After two weeks, the individual returned and the same procedures were executed to include anthropometry and blood analysis. Even though the subject did not show changes in blood markers of CVD risk (lipids and inflammatory markers), the hypothesis for the thesis that the study design would be effective was accepted. Thus, the procedure was successful and validated and will be used in the future study.
ContributorsBratrud, Kathryn Michelle (Author) / Martin, Keith (Thesis director) / Appel, Christy (Committee member) / Shepard, Christina (Committee member) / Barrett, The Honors College (Contributor) / T. Denny Sanford School of Social and Family Dynamics (Contributor) / School of Nutrition and Health Promotion (Contributor)
Created2013-05
172008-Thumbnail Image.png
Description
Nearly four decades after HIV (Human Immunodeficiency Virus) was identified as the causal agent of the AIDS (Acquired Immunodeficiency Syndrome) pandemic, it remains a top global health concern impacting millions of people around the world particularly in Sub-Saharan Africa. Despite significant scientific, governmental and nongovernmental organizational efforts, most HIV-infected patients

Nearly four decades after HIV (Human Immunodeficiency Virus) was identified as the causal agent of the AIDS (Acquired Immunodeficiency Syndrome) pandemic, it remains a top global health concern impacting millions of people around the world particularly in Sub-Saharan Africa. Despite significant scientific, governmental and nongovernmental organizational efforts, most HIV-infected patients do not have access to prevention and treatment. Since cure is not available yet, developing a vaccine to prevent HIV from spreading is a priority. Previous studies have worked on an HIV vaccine platform using attenuated Vaccinia vector and plant-produced HIV virus-like particles (VLPs) to deliver Gag and dgp41 antigens as a heterologous prime-boost strategy. To further study this work, I conducted immunogenicity studies in rabbits which exhibited high IgG responses against Gag (p < 0.002) and less to dgp41. To increase the immunogenicity to dgp41, focusing on MPER, a combination of IgG fusions with VLPs as a vaccine platform was studied in mice. Both IgG fusion constructs showed similar serum results, though Gag-specific serum IgG responses were significantly higher (p < 0.007) for the recombinant immune complex (RIC) group than hexamer forming complexes (Hex). In an effort to expand the use of HIV VLPs, RSV (Respiratory Syncytial Virus) pre-fusion stabilized F (pre-F) protein was presented by self-assembling HIV-1 Gag as a potential vaccine strategy for RSV infections. Multiple constructs were designed to assemble into chimeric VLPs and tested for recombinant plant expression. Mouse immunogenicity study using these chimeric VLPs showed significantly high F-specific IgG (p < 0.001) in serum and superior IgA in mucosal samples for the group that received one of the pre-F stabilized VLP constructs. Moreover, when the same antigen was administered with cholera toxin intranasally, it generated IgA response in nasal flush higher than when it was administered subcutaneously. To summarize, this study showed the efficiency of a plant-produced VLP-based system as an adaptable chimeric vaccine platform for potential use with various viral antigens in pursuit of a vaccine strategy that is immunogenic in animal studies.
ContributorsKamzina, Aigerim (Author) / Mor, Tsafrir TM (Thesis advisor) / Mason, Hugh HM (Committee member) / Jacobs, Bertram BJ (Committee member) / Blattman, Joseph JB (Committee member) / Arizona State University (Publisher)
Created2022
166031-Thumbnail Image.png
Description

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with

Plant-made virus-like particles (VLPs), composed of HIV-1 Gag and deconstructed gp41 proteins, have been shown to be safe and immunogenic in mice. Here, we report the successful production of HIV-1 Gag/dgp41 VLPs in Nicotiana benthamiana, using an enhanced geminivirus-based expression vector. This novel vector results in unique expression kinetics, with peak protein accumulation and minimal necrosis achieved on day 4 post-infiltration. In comparing various purification strategies, it was determined that a 20% ammonium sulfate precipitation is an effective and efficient method for removing plant proteins and purifying the recombinant VLPs of interest. If further purification is required, this may be achieved through ultracentrifugation. VLPs are a useful platform for a variety of biomedical applications and developing the technology to efficiently produce VLPs in the plant expression system is of critical importance.

ContributorsFleming, Claire (Author) / Mor, Tsafrir (Thesis director) / Mason, Hugh (Committee member) / Kamzina, Aigerim (Committee member) / Barrett, The Honors College (Contributor) / Department of Physics (Contributor) / School of Life Sciences (Contributor)
Created2022-05