Matching Items (830)
Filtering by

Clear all filters

151484-Thumbnail Image.png
Description
An understanding of diet habits is crucial in implementing proper management strategies for wildlife. Diet analysis, however, remains a challenge for ruminant species. Microhistological analysis, the method most often employed in herbivore diet studies, is tedious and time consuming. In addition, it requires considerable training and an extensive reference plant

An understanding of diet habits is crucial in implementing proper management strategies for wildlife. Diet analysis, however, remains a challenge for ruminant species. Microhistological analysis, the method most often employed in herbivore diet studies, is tedious and time consuming. In addition, it requires considerable training and an extensive reference plant collection. The development of DNA barcoding (species identification using a standardized DNA sequence) and the availability of recent DNA sequencing techniques offer new possibilities in diet analysis for ungulates. Using fecal material collected from controlled feeding trials on pygmy goats, (Capra hicus), novel DNA barcoding technology using the P6-loop of the chloroplast trnL (UAA) intron was compared with the traditional microhistological technique. At its current stage of technological development, this study demonstrated that DNA barcoding did not enhance the ability to detect plant species in herbivore diets. A higher mean species composition was reported with microhistological analysis (79%) as compared to DNA barcoding (50%). Microhistological analysis consistently reported a higher species presence by forage class. For affect positive species identification, microhistology estimated an average of 89% correct detection in control diets, while DNA barcoding estimated 50% correct detection of species. It was hypothesized that a number of factors, including variation in chloroplast content in feed species and the effect of rumen bacteria on degradation of DNA, influenced the ability to detect plant species in herbivore diets and concluded that while DNA barcoding opens up new possibilities in the study of plant-herbivore interactions, further studies are needed to standardize techniques and for DNA bar-coding in this context.
ContributorsMurphree, Julie Joan (Author) / Miller, William H. (Thesis advisor) / Steele, Kelly (Committee member) / Salywon, Andrew (Committee member) / Arizona State University (Publisher)
Created2012
151503-Thumbnail Image.png
Description
Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type

Objective: Vinegar consumption studies have demonstrated possible therapeutic effects in reducing HbA1c and postprandial glycemia. The purpose of the study was to closely examine the effects of a commercial vinegar drink on daily fluctuations in fasting glucose concentrations and postprandial glycemia, and on HbA1c, in individuals at risk for Type 2 Diabetes Mellitus (T2D). Design: Thirteen women and one man (21-62 y; mean, 46.0±3.9 y) participated in this 12-week parallel-arm trial. Participants were recruited from a campus community and were healthy and not diabetic by self-report. Participants were not prescribed oral hypoglycemic medications or insulin; other medications were allowed if use was stable for > 3 months. Subjects were randomized to one of two groups: VIN (8 ounces vinegar drink providing 1.5 g acetic acid) or CON (1 vinegar pill providing 0.04 g acetic acid). Treatments were taken twice daily immediately prior to the lunch and dinner meals. Venous blood samples were drawn at trial weeks 0 and 12 to measure insulin, fasting glucose, and HbA1c. Subjects recorded fasting glucose and 2-h postprandial glycemia concentrations daily using a glucometer. Results: The VIN group showed significant reductions in fasting capillary blood glucose concentrations (p=0.05) that were immediate and sustained throughout the duration of the study. The VIN group had reductions in 2-h postprandial glucose (mean change of −7.6±6.8 mg/dL over the 12-week trial), but this value was not significantly different than that for the CON group (mean change of 3.3±5.3 mg/dL over the 12-week trial, p=0.232). HbA1c did not significantly change (p=0.702), but the reduction in HbA1c in the VIN group, −0.14±0.1%, may have physiological relevance. Conclusions: Significant reductions in HbA1c were not observed after daily consumption of a vinegar drink containing 1.5 g acetic acid in non-diabetic individuals. However, the vinegar drink did significantly reduce fasting capillary blood glucose concentrations in these individuals as compared to a vinegar pill containing 0.04 g acetic acid. These results support a therapeutic effect for vinegar in T2D prevention and progression, specifically in high-risk populations.
ContributorsQuagliano, Samantha (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Dixon, Kathleen (Committee member) / Arizona State University (Publisher)
Created2013
151504-Thumbnail Image.png
Description
Objective: The purpose of this randomized parallel arm trial was to demonstrate the effects of daily fish oil supplementation (600mg per day for eight weeks) on body composition and body mass in young healthy women, aged 18-38, at a large southwestern university. Design: 26 non-obese (mean BMI 23.7±0.6 kg/m2), healthy

Objective: The purpose of this randomized parallel arm trial was to demonstrate the effects of daily fish oil supplementation (600mg per day for eight weeks) on body composition and body mass in young healthy women, aged 18-38, at a large southwestern university. Design: 26 non-obese (mean BMI 23.7±0.6 kg/m2), healthy women (18-38y; mean, 23.5±1.1 y) from a southwestern Arizona university campus community completed the study. Subjects were healthy, non-smokers, consuming less than 3.5 oz of fish per week according to self-report. Participants were randomized to one of two groups: FISH (600 mg omega-3 fatty acids provided in one gel capsule per day), or CON (1000 mg coconut oil placebo provided in one gel capsule per day). Body weight, BMI, and percent body fat were measured using a stadiometer and bioelectrical impedance scale at the screening visit and intervention weeks 1, 4, and 8. 24-hour dietary recalls were also performed at weeks 1 and 8. Results: 8 weeks of omega-3 fatty acid supplementation did not significantly alter body weight (p=0.830), BMI (p=1.00), or body fat percentage (p=0.600) as compared to placebo. Although not statistically significant, 24-hour dietary recalls performed at the beginning and end of the intervention revealed a trend towards increased caloric intake in the FISH group and decreased caloric intake in the CON group throughout the course of the study (p=0.069). If maintained, this difference in caloric intake could have physiological relevance. Conclusions: Omega-3 fatty acids do not significantly alter body weight or body composition in healthy young females. These findings do not refute the current recommendations for Americans to consume at least 8 oz of omega-3-rich seafood per week, supplying 250 mg EPA and DHA per day. More research is needed to investigate the potential for omega-3 fatty acids to modulate daily caloric intake.
ContributorsTeran, Bianca (Author) / Johnston, Carol (Thesis advisor) / Johnson, Melinda (Committee member) / Ohri-Vachaspati, Punam (Committee member) / Arizona State University (Publisher)
Created2013
151512-Thumbnail Image.png
Description
Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7

Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7 μm achievable using lattice matched GaInAs. The large lattice mismatch required to reach the extended wavelengths results in photodetector materials that contain a large number of misfit dislocations. The low quality of these materials results in a large nonradiative Shockley Read Hall generation/recombination rate that is manifested as an undesirable large thermal noise level in these photodetectors. This work focuses on utilizing the different band structure engineering methods to design more efficient devices on InP substrates. One prospective way to improve photodetector performance at the extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that have a type-II band alignment, where the ground state transition energy of the superlattice is smaller than the bandgap of either constituent material. Over the extended wavelength range of 2 to 3 μm this superlattice structure has an optimal period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, respectively. In using a type-II superlattice to extend the cutoff wavelength there is a tradeoff between the wavelength reached and the electron-hole wavefunction overlap realized, and hence absorption coefficient achieved. This tradeoff and the subsequent reduction in performance can be overcome by two methods: adding bismuth to this type-II material system; applying strain on both layers in the system to attain strain-balanced condition. These allow the valance band alignment and hence the wavefunction overlap to be tuned independently of the wavelength cutoff. Adding 3% bismuth to the GaInAs constituent material, the resulting lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489superlattice realizes a 50% larger absorption coefficient. While as, similar results can be achieved with strain-balanced condition with strain limited to 1.9% on either layer. The optimal design rules derived from the different possibilities make it feasible to extract superlattice period thickness with the best absorption coefficient for any cutoff wavelength in the range.  
ContributorsSharma, Ankur R (Author) / Johnson, Shane (Thesis advisor) / Goryll, Michael (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
151513-Thumbnail Image.png
Description
Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material,

Ball Grid Array (BGA) using lead-free or lead-rich solder materials are widely used as Second Level Interconnects (SLI) in mounting packaged components to the printed circuit board (PCB). The reliability of these solder joints is of significant importance to the performance of microelectronics components and systems. Product design/form-factor, solder material, manufacturing process, use condition, as well as, the inherent variabilities present in the system, greatly influence product reliability. Accurate reliability analysis requires an integrated approach to concurrently account for all these factors and their synergistic effects. Such an integrated and robust methodology can be used in design and development of new and advanced microelectronics systems and can provide significant improvement in cycle-time, cost, and reliability. IMPRPK approach is based on a probabilistic methodology, focusing on three major tasks of (1) Characterization of BGA solder joints to identify failure mechanisms and obtain statistical data, (2) Finite Element analysis (FEM) to predict system response needed for life prediction, and (3) development of a probabilistic methodology to predict the reliability, as well as, the sensitivity of the system to various parameters and the variabilities. These tasks and the predictive capabilities of IMPRPK in microelectronic reliability analysis are discussed.
ContributorsFallah-Adl, Ali (Author) / Tasooji, Amaneh (Thesis advisor) / Krause, Stephen (Committee member) / Alford, Terry (Committee member) / Jiang, Hanqing (Committee member) / Mahajan, Ravi (Committee member) / Arizona State University (Publisher)
Created2013
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151520-Thumbnail Image.png
Description
In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical

In 2002, a scientifically derived food guide pyramid for vegetarians, the Modified Food Guide for Lacto-ovo-vegetarians and Vegans was published and well received. Now that 10 years have passed, new scientific literature regarding the bioavailability of the nutrients of key concern in vegetarian diets has been published, and the graphical format of the nation's food guide has evolved from a pyramid shape into a circular plate. The objective of this research was to examine the post-2002 literature regarding the bioavailability of key nutrients in vegetarian diets; to use this information to update the recommendations made in the 2002 Modified Food Guide Pyramid for Lacto-ovo-vegetarians and Vegans; and to adapt this revised food plan to the new USDA MyPlate format. This process involved reviewing the scientific literature to determine if the DRIs for the nutrients of key concern in vegetarian diets are adequate for the vegetarian population and using this information to develop new recommendations for vegetarians if necessary, analyzing the nutrient content of representative foods in different food groups, reconfiguring the food groups so that foods with like nutrient components were grouped together, determining the number of servings of each food group required to meet vegetarians' nutrient requirements at three caloric levels, and developing sample menus. A circular plate graphic, the Vegetarian Plate, was designed to illustrate the recommendations of this updated food guide. This updated, scientifically derived food guide provides a sound base for diet planning for lacto-ovo-vegetarians and vegans. Further research is needed to assess the Vegetarian Plate's adequacy for children, pregnant and lactating women, athletes, and individuals with medical conditions or chronic diseases.
ContributorsFladell, Lauren (Author) / Johnston, Carol (Thesis advisor) / Vaughan, Linda (Committee member) / Shepard, Christina (Committee member) / Arizona State University (Publisher)
Created2013
151521-Thumbnail Image.png
Description
This study was designed to influence consumer habits, specifically those relating to purchases of fruits, vegetables, and junk food. Previous studies have clearly shown the ineffectiveness of simply describing the health benefits of eating more fruits and vegetables (F/V). In contrast, this study aimed to change the result by changing

This study was designed to influence consumer habits, specifically those relating to purchases of fruits, vegetables, and junk food. Previous studies have clearly shown the ineffectiveness of simply describing the health benefits of eating more fruits and vegetables (F/V). In contrast, this study aimed to change the result by changing the message: providing participants with insight into the hidden agendas of food companies and grocery stores, provide useful tips on how to include children when selecting F/V, and emphasizing the importance of parental modeling in regard to food purchases. Participants of this study were separated into two groups, the tour group and the education group. The tour group was guided through a grocery store where they learned about sales tactics and manipulations used by grocery stores and food companies to influence purchases. Education group participants were provided with an education session focusing on USDA and FDA handouts displaying current educational suggestions for increasing F/V consumption. Grocery store receipts were collected and analyzed to track the progress of both groups. The goal of the study was to identify a method of informing consumers that will produce a significant change in behavior. Increasing F/V consumption, even in relatively small amounts, would be an important step forward in improving the diet and overall health of Americans. This study was the first of its kind to measure purchasing patterns objectively (through analysis of purchase receipts, rather than personal opinion/evaluation surveys) and in a wide-scope retail environment that includes all grocery store purchases by participants. Significant increases or decreases in the amount of money spent on F/V, or the amount (pounds) of F/V purchased were not seen, however a small correlation (r = 0.133) exists when comparing the weight of F/V purchased pre/post intervention. Data from Food Frequency Questionnaires shows participants consuming significantly higher amounts of F/V post intervention (p=0.043). The tour group and education group experienced an average increase of 0.7 servings per day. Future interventions might benefit by extending their scope to include cooking demonstrations, in-home interventions, and education on healthy eating outside of the home.
ContributorsKinsfather, Diana (Author) / Johnston, Carol (Thesis advisor) / Hekler, Eric (Committee member) / Tetreault, Colin (Committee member) / Arizona State University (Publisher)
Created2013
151522-Thumbnail Image.png
Description
Health knowledge alone does not appear to lead to sustained healthy behavior, suggesting the need for alternative methods for improving diet. Recent research shows a possible role of moral contexts of food production on diet related behaviors; however no studies have been conducted to specifically explore the relationship between moral

Health knowledge alone does not appear to lead to sustained healthy behavior, suggesting the need for alternative methods for improving diet. Recent research shows a possible role of moral contexts of food production on diet related behaviors; however no studies have been conducted to specifically explore the relationship between moral constructs and food consumption. This study examined the relationship between fast food consumption and two measures of morality, Moral Foundations Questionnaire (MFQ), specifically harm/care and purity/sanctity foundations, and the Ethical Concern in food choice (EC) questionnaire, which includes animal welfare, environment protection, political values, and religion subscales. The study also examined the association between the measures of morality. 739 participants, primarily female (71.4%) and non-Hispanic Whites (76.5%), completed an online survey that included the MFQ, the EC questionnaire, and a brief fast food screener. Participant's morality scores in relation to their fast food consumption were examined first using bivariate ANOVA analysis and then using logistic regression to control for covariates. The MFQ foundations were compared with the EC subscales using Pearson correlation coefficient. Significant bivariate relationships were seen between fast food consumption and the MFQ's purity/sanctity foundation and EC's religion subscales (p<0.05). However these significant bivariate relationships did not hold after controlling for gender, race, university education, and religion in the logistic regression analysis. The foundations of the MFQ were positively correlated with the subscales for the EC questionnaire (r values ranging from .233-.613 (p<0.01). MFQ's purity/sanctity foundation and EC's religion subscale were the two most highly correlated (r=.613, p<0.01) showing that moral intuitions may be associated with eating decision making. The study did not find significant associations between MFQ or EC scores and fast food consumption.
ContributorsMartinelli, Sarah (Author) / Ohri-Vachaspati, Punam (Thesis advisor) / Hekler, Eric B. (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2013
151418-Thumbnail Image.png
Description
ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of

ABSTRACT This work seeks to develop a practical solution for short range ultrasonic communications and produce an integrated array of acoustic transmitters on a flexible substrate. This is done using flexible thin film transistor (TFT) and micro electromechanical systems (MEMS). The goal is to develop a flexible system capable of communicating in the ultrasonic frequency range at a distance of 10 - 100 meters. This requires a great deal of innovation on the part of the FDC team developing the TFT driving circuitry and the MEMS team adapting the technology for fabrication on a flexible substrate. The technologies required for this research are independently developed. The TFT development is driven primarily by research into flexible displays. The MEMS development is driving by research in biosensors and micro actuators. This project involves the integration of TFT flexible circuit capabilities with MEMS micro actuators in the novel area of flexible acoustic transmitter arrays. This thesis focuses on the design, testing and analysis of the circuit components required for this project.
ContributorsDaugherty, Robin (Author) / Allee, David R. (Thesis advisor) / Chae, Junseok (Thesis advisor) / Aberle, James T (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2012