Matching Items (72)
Filtering by

Clear all filters

152435-Thumbnail Image.png
Description
ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin

ABSTRACT Vitamin C plays an important role in fatty acid metabolism because it is required for carnitine synthesis. Vitamin C has been shown to have an inverse relationship with weight and body fat percent in a number of studies. However, there has been limited research exploring the relationship between vitamin C status and fat oxidation. This cross-sectional study investigates the relationship between plasma vitamin C and fat oxidation in 69 participants and between plasma vitamin C and body fatness in 82 participants. Participants were measured for substrate utilization via indirect calorimetry while at rest and measured for body fatness via DEXA scan. Participants provided a single fasting blood draw for analysis of plasma vitamin C. Results did not show a significant association between vitamin C and fat oxidation while at rest, therefore the data do not support the hypothesis that vitamin C status affects fat oxidation in a resting state. However, a significant inverse association was found between vitamin C and both total body fat percent and visceral fat.
ContributorsObermeyer, Lindsay (Author) / Johnston, Carol (Thesis advisor) / Hall, Rick (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2014
150199-Thumbnail Image.png
Description
Vitamin C is a micronutrient with many important physiological roles. It can function as a reducing agent, a free radical scavenger, and an enzyme cofactor. Much research has examined the potential of vitamin C supplements to enhance exercise capacity in trained athletes; however, little is known regarding the effects of

Vitamin C is a micronutrient with many important physiological roles. It can function as a reducing agent, a free radical scavenger, and an enzyme cofactor. Much research has examined the potential of vitamin C supplements to enhance exercise capacity in trained athletes; however, little is known regarding the effects of vitamin C supplements on the promotion of leisure-time physical activity in the general population. This area deserves attention since 1/3 of Americans have below adequate vitamin C status, and since aversion to exercise, fatigue, and altered mood states are the earliest signs of poor vitamin C status. This study analyzed the effect of supplementing 500 mg twice daily of vitamin C on self-reported leisure-time activity levels and mood states in young men. Twenty-nine healthy, young men, aged 18-35 years, were stratified by age, BMI, smoking status, and plasma vitamin C concentrations and assigned to either a control (CON) or experimental group (VTC) for the 8-week randomized, double-blinded, parallel arm trial. Subjects were instructed to keep track of their leisure-time physical activity by filling out the validated Godin Leisure-Time Exercise Questionnaire weekly for the entire study. In addition, subjects took the self-administered Profile of Mood States (POMS) at baseline, week 4, and week 8 to observe mood states. Plasma vitamin C concentrations were analyzed at the initial screening, week 4, and week 8 of the study. Plasma vitamin C concentrations significantly differed by group at week 4 and week 8. Furthermore, vitamin C supplementation significantly increased self-reported mild, moderate, and strenuous activity levels during the 8-week trial. Overall, total physical activity scores increased nearly 50% in the VTC group as compared to 18% in the CON group (p=0.001). However, mood states were not significantly impacted by vitamin C supplementation during the trial. This study provides the first experimental evidence that supplementing 500 mg of vitamin C twice daily can be effective in increasing leisure-time physical activity in healthy young men. This study, however, was unable to link improvements in physical activity rates to improved mood states. Since sedentary behaviors have been implicated in the rise of obesity in the U.S., further research should be conducted to substantiate the finding that vitamin C supplementation increases physical activity.
ContributorsSchumacher, Sarah (Author) / Johnston, Carol (Thesis advisor) / Appel, Christy (Committee member) / Swan, Pamela (Committee member) / Arizona State University (Publisher)
Created2012
149777-Thumbnail Image.png
Description
Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of

Nut consumption, specifically almonds, have been shown to help maintain weight and influence disease risk factors in adult populations. Limited studies have been conducted examining the effect of a small dose of almonds on energy intake and body weight. The objective of this study was to determine the influence of pre-meal almond consumption on energy intake and weight in overweight and obese adults. In this study included 21, overweight or obese, participants who were considered healthy or had a controlled disease state. This 8-week parallel arm study, participants were randomized to consume an isocaloric amount of almonds, (1 oz) serving, or two (2 oz) cheese stick serving, 30 minutes before the dinner meal, 5 times per week. Anthropometric measurements including weight, waist circumference, and body fat percentage were recorded at baseline, week 1, 4, and 8. Measurement of energy intake was self-reported for two consecutive days at week 1, 4 and 8 using the ASA24 automated dietary program. The energy intake after 8 weeks of almond consumption was not significantly different when compared to the control group (p=0.965). In addition, body weight was not significantly reduced after 8 weeks of the almond intervention (p=0.562). Other parameters measured in this 8-week trial did not differ between the intervention and the control group. These data presented are underpowered and therefore inconclusive on the effects that 1 oz of almonds, in the diet, 5 per week has on energy intake and bodyweight.
ContributorsMcBride, Lindsey (Author) / Johnston, Carol (Thesis advisor) / Swan, Pamela (Committee member) / Mayol-Kreiser, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150915-Thumbnail Image.png
Description
The popularization of energy drink use as a supplement to exercise is steadily increasing, especially among young adult males. However, the effects of energy drinks on muscular performance in young adults have yet to be clearly elucidated. Eight male subjects (mean age: 23.3 ± 4.3 yrs, height: 181.0 ± 5.3

The popularization of energy drink use as a supplement to exercise is steadily increasing, especially among young adult males. However, the effects of energy drinks on muscular performance in young adults have yet to be clearly elucidated. Eight male subjects (mean age: 23.3 ± 4.3 yrs, height: 181.0 ± 5.3 cm, fat percent 17.8 ± 5.2%, and weight 85.3 ± 12.6 kg) completed this randomized double-blinded cross over study. The purpose of this study was to determine differences in acute muscular strength and endurance and Profile of Mood States (POMS) scores between three treatments (RockStar, sugar-free RockStar, and sugar-free caffeine-free Placebo). It was hypothesized that there would be no significant differences in acute peak torque and endurance of the knee extensors and flexors or on fatigue and vigor subscores from the POMS questionnaire. Each man was tested randomly at least 1 week apart. Diet and time of day were held constant across trials. Peak torque of knee extensors and flexors at 60, 180, 240 degress/second and fatigue index and total work were calculated by performing 50 repetitions at 240 degrees/second. There were no significant differences in peak torque, fatigue index, or total work measures or in subjective measures of fatigue or vigor from the POMS between the treatments. This study indicates that RockStar energy drinks have no acute ergogenic effects in young men performing isokinetic strength or endurance testing.
ContributorsHawley, Michelle (Author) / Swan, Pamela (Thesis advisor) / Campbell, Kathryn (Committee member) / Johnston, Carol (Committee member) / Arizona State University (Publisher)
Created2012
157055-Thumbnail Image.png
Description
Most American children consume less than the recommend amount of fruits and vegetables (F&V), 74% and 84%, respectively. Eating too few F&V in childhood is associated with increased risk of cardiovascular disease, hypertension, respiratory symptoms, and some cancers later in life. Adequate F&V consumption favorably impacts antioxidant status, gut flora,

Most American children consume less than the recommend amount of fruits and vegetables (F&V), 74% and 84%, respectively. Eating too few F&V in childhood is associated with increased risk of cardiovascular disease, hypertension, respiratory symptoms, and some cancers later in life. Adequate F&V consumption favorably impacts antioxidant status, gut flora, mood, and cognitive functioning. Nutrients such as vitamin C and fiber are only naturally occurring in plant foods. For many children, school lunches are an important source of F&V. This pilot study assessed the feasibility of providing condiments to increase children’s consumption of salad bar F&V in an elementary school cafeteria at lunchtime. The trial site was a single Title 1 elementary school in a large, urban district in the greater Phoenix metropolitan area. Taste tests were conducted on three convenience samples of children in grades 3 – 7, aged 8 – 12 years (n=57) to identify the most popular condiment flavors. The five highest rated flavors were made available daily at a “flavor station” in the school’s lunchroom for three consecutive weeks during the Fall 2018 semester. Descriptive and inferential statistics were used to analyze data. A cost analysis was conducted for capital outlays related to the flavor station. School employee perceptions of F&V and the flavor station were assessed via posttest online surveys. Peanut butter was rated the best tasting condiment by children and was the only condiment that increased in popularity throughout the intervention. Overall, daily F&V consumption increased 17 g per child. There was a linear increase in F&V consumption during the study (r=0.986; P=0.014). As a proportion of the total F&V selected, F&V waste decreased by nearly 3%. The average daily cost of providing the flavor station was $0.09 per student. Sixty-five percent of school staff felt that the flavor station should continue at their school. Peanut butter is an affordable, nutrient-dense food that accommodates the USDA Food and Nutrition Service meal patterns and nutrition standards, and thus, is a viable strategy for increasing F&V consumption and decreasing F&V waste. The results herein inform the development of future interventions to improve the palatability of F&V for children.
ContributorsScholtz, Cameron (Author) / Johnston, Carol (Thesis advisor) / Alexon, Christy (Committee member) / Hooker, Steven (Committee member) / Schwake, David (Committee member) / Swan, Pamela (Committee member) / Wharton, Christopher (Christopher Mack), 1977- (Committee member) / Arizona State University (Publisher)
Created2019
135573-Thumbnail Image.png
Description
Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The

Dogs' health and wellbeing is of great importance to their owners. The most common nutritional problem for pet dogs is obesity, with 22-40% of pet dogs being classified as overweight or obese. With many adverse health effects associated with obesity, this is a major concern for owners and veterinarians. The degree to which dogs enjoy consuming certain foods can have substantial implications for their body weight, so it is important to understand which aspects of foods make them appealing to dogs. This study aimed to determine whether nutritional aspects of commercial dog foods predict dogs' preferences for those foods. It was found that consumption preference is positively correlated with protein content (p < .001), therefore implying that the protein content of commercial dry dog foods may predict dogs' consumption preferences. Consumption preferences were not predicted by other available measures of food content or caloric value. Dogs' preference for foods high in protein content may be due to the satiating effect of protein. Since foods high in protein both reduce the amount of energy consumed and are found to be palatable to dogs, high-protein dog foods may offer a way for dog food manufacturers, veterinarians, and pet owners to combat obesity in pet dogs.
ContributorsPrevost, Emily Danielle (Author) / Wynne, Clive (Thesis director) / Hall, Nathaniel (Committee member) / School of Life Sciences (Contributor) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135365-Thumbnail Image.png
Description
This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore

This study focused on the connection between the EnvZ/OmpR two-component regulatory system and the iron homeostasis system in Escherichia coli, specifically how a mutant form of EnvZ11/OmpR is able to reduce the expression of fepA::lacZ, a reporter gene fusion in E. coli. FepA is one of several outer membrane siderophore receptors that allow extracellular siderophores bound to iron to enter the cells to power various biological processes. Previous studies have shown that in E. coli cells that expressed a mutant allele of envZ, called envZ11, which led to altered expression of various iron genes including down regulation of fepA::lacZ. The wild type EnvZ/OmpR system is not considered to regulate iron genes, but because these envz11 strains had downregulated fepA::lacZ, this study was undertaken to understand the connection and mechanisms of this downregulation. A large number of Lac+ revertants were obtained from the B32-2483 strain (envz11 and fepA::lacZ) and 7 Lac+ revertants that had reversion mutations not directly correcting the envZ11 allele were further characterized. With P1 phage transduction genetic mapping that involved moving a kanamycin resistance marker linked to fepA::lacZ, two Lac+ revertants were found to have their reversion mutations in the fepA promoter region, while the other five revertants had their mutations mapping outside the fepA region. These two revertants underwent DNA sequencing and found to carry two different single base pair mutations in two different locations of the fepA promoter region. Each one is in the Fur repressor binding region, but one also may have affected the Shine-Dalgarno region involved in translation initiation. All 7 reveratants underwent beta-galactosidase assays to measure fepA::lacZ expression. The two revertants that had mutations in the fepA promoter region had significantly increased fepA activity, with the revertant with the Shine-Dalgarno mutation having the most elevated fepA expression. The other 5 revertants that did not map in the fepA region had fepA expression elevated to the same level as that found in the wild type EnvZ/OmpR background. The data suggest that the negative effect of envZ11 can be overcome by multiple mechanisms, including directly correcting the envZ11 allele or changing the fepA promoter region.
ContributorsKalinkin, Victor Arkady (Co-author) / Misra, Rajeev (Co-author, Thesis director) / Mason, Hugh (Committee member) / Foy, Joseph (Committee member) / Biomedical Informatics Program (Contributor) / School of Life Sciences (Contributor) / W. P. Carey School of Business (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135454-Thumbnail Image.png
Description
Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes

Mammary gland development in humans during puberty involves the enlargement of breast tissue, but this is not true in non-human primates. To identify potential causes of this difference, I examined variation in substitution rates across genes related to mammary development. Genes undergoing purifying selection show slower-than-average substitution rates, while genes undergoing positive selection show faster rates. These may be related to the difference between humans and other primates. Three genes were found to be accelerated were FOXF1, IGFBP5, and ATP2B2, but only the latter one was found in humans and it seems unlikely that it would be related to the differences between mammary gland development at puberty between humans and non-human primates.
ContributorsArroyo, Diana (Author) / Cartwright, Reed (Thesis director) / Wilson Sayres, Melissa (Committee member) / Schwartz, Rachel (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
136626-Thumbnail Image.png
Description
Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional

Alternative polyadenylation (APA) is the biological mechanism in which the same gene can have multiple 3'untranslated region (3'UTR) isoforms due to the presence of multiple polyadenylation signal (PAS) elements within the pre mRNAs. Because APA produces mRNA transcripts that have different 3'UTR isoforms, certain transcripts may be subject to post-transcriptional regulation by regulatory non-coding RNAs, such as microRNAs or RNA binding proteins defects of which have been implicated in diseases such as cancer. Despite the increasing level of information, functional understanding of the molecular mechanisms involved in transcription is still poorly understood, nor is it clear why APA is necessary at a cell or tissue-specific level. To address these questions I wanted to develop a set of sensor strain plasmids capable of detecting cleavage and polyadenylation in vivo, inject the complete sensor strain plasmid into C. elegans and prepare stable transgenic lines, and perform proof-of-principle RNAi feeding experiments targeting genes associated with the cleavage and polyadenylation complex machinery. I demonstrated that it was possible to create a plasmid capable of detecting cleavage and polyadenylation in C. elegans; however, issues arose during the RNAi assays indicating the sensor strain plasmid was not sensitive enough to the RNAi to effectively detect in the worms. Once the problems involved with sensitivity and variability in the RNAi effects are resolved, the plasmid would be able to better address questions regarding the functional understanding of molecular mechanisms involved in transcription termination.
ContributorsWilky, Henry Patrick (Author) / Mangone, Marco (Thesis director) / Newbern, Jason (Committee member) / Blazie, Stephen (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor)
Created2015-05
136182-Thumbnail Image.png
Description
The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic

The Dorrance Center for Rare Childhood Disorders is a unique research division at TGen (The Translational Genomics Research Institute) that provides personalized care to children and young adults facing rare, undiagnosed diseases. TGen scientists believe that the answers to these enigmatic disorders can often be found in a person's genetic code. They aim to solve these genetic mysteries using whole exome sequencing, a method that prioritizes the protein-coding portion of the genome in the search for disease-causing variants. Unfortunately, a communication gap sometimes exists between the TGen scientists and the patients they serve. I have seen, first hand, the kind of confusion that this study elicits in the families of its participants. Therefore, for my thesis, I decided to create a booklet that is meant to provide some clarity as to what exactly The Dorrance Center for Rare Childhood Disorders does to help diagnose children with rare disorders. The purpose of the booklet is to dispel any confusion regarding the study by providing a general review of genetics and an application of these lessons to the relevant sequencing technology as well as a discussion of the causes and effects of genetic mutations that often times are linked to rare childhood disorders.
ContributorsCambron, Julia Claire (Author) / LaBelle, Jeffrey (Thesis director) / Huentelman, Matt (Committee member) / Barrett, The Honors College (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05