Matching Items (2)
Filtering by

Clear all filters

Description
This thesis serves as an experimental investigation into the potential of machine learning through attempting to predict the future price of a cryptocurrency. Through the use of web scraping, short interval data was collected on both Bitcoin and Dogecoin. Dogecoin was the dataset that was eventually used in this thesis

This thesis serves as an experimental investigation into the potential of machine learning through attempting to predict the future price of a cryptocurrency. Through the use of web scraping, short interval data was collected on both Bitcoin and Dogecoin. Dogecoin was the dataset that was eventually used in this thesis due to its relative stability compared to Bitcoin. At the time of the data collection, Bitcoin became a much more frequent topic in the media and had more significant fluctuations due to it. The data was processed into consistent three separate, consistent timesteps, and used to generate predictive models. The models were able to accurately predict test data given all the preceding test data but were unable to autoregressively predict future data given only the first set of test data points. Ultimately, this project helps illustrate the complexities of extended future price prediction when using simple models like linear regression.
ContributorsMurwin, Andrew (Author) / Bryan, Chris (Thesis director) / Ghayekhloo, Samira (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2022-12
Description
Manually determining the health of a plant requires time and expertise from a human. Automating this process utilizing machine learning could provide significant benefits to the agricultural field. The detection and classification of health defects in crops by analyzing visual data using computer vision tools can accomplish this. In this

Manually determining the health of a plant requires time and expertise from a human. Automating this process utilizing machine learning could provide significant benefits to the agricultural field. The detection and classification of health defects in crops by analyzing visual data using computer vision tools can accomplish this. In this paper, the task is completed using two different types of existing machine learning algorithms, ResNet50 and CapsNet, which take images of crops as input and return a classification that denotes the health defect the crop suffers from. Specifically, the models analyze the images to determine if a nutritional deficiency or disease is present and, if so, identify it. The purpose of this project is to apply the proven deep learning architecture, ResNet50, to the data, which serves as a baseline for comparison of performance with the less researched architecture, CapsNet. This comparison highlights differences in the performance of the two architectures when applied to a complex dataset with a multitude of classes. This report details the data pipeline process, including dataset collection and validation, as well as preprocessing and application to the model. Additionally, methods of improving the accuracy of the models are recorded and analyzed to provide further insights into the comparison of the different architectures. The ResNet-50 model achieved an accuracy of 100% after being trained on the nutritional deficiency dataset. It achieved an accuracy of 88.5% on the disease dataset. The CapsNet model achieved an accuracy of 90% on the nutritional deficiency dataset but only 70% on the disease dataset. In comparing the performance of the two models, the ResNet model outperformed the other; however, the CapsNet model shows promise for future implementations. With larger, more complete datasets as well as improvements to the design of capsule networks, they will likely provide exceptional performance for complex image classification tasks.
ContributorsChristner, Drew (Author) / Carter, Lynn (Thesis director) / Ghayekhloo, Samira (Committee member) / Barrett, The Honors College (Contributor) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor)
Created2024-05