Matching Items (1,053)
Filtering by

Clear all filters

152235-Thumbnail Image.png
Description
The ability to design high performance buildings has acquired great importance in recent years due to numerous federal, societal and environmental initiatives. However, this endeavor is much more demanding in terms of designer expertise and time. It requires a whole new level of synergy between automated performance prediction with the

The ability to design high performance buildings has acquired great importance in recent years due to numerous federal, societal and environmental initiatives. However, this endeavor is much more demanding in terms of designer expertise and time. It requires a whole new level of synergy between automated performance prediction with the human capabilities to perceive, evaluate and ultimately select a suitable solution. While performance prediction can be highly automated through the use of computers, performance evaluation cannot, unless it is with respect to a single criterion. The need to address multi-criteria requirements makes it more valuable for a designer to know the "latitude" or "degrees of freedom" he has in changing certain design variables while achieving preset criteria such as energy performance, life cycle cost, environmental impacts etc. This requirement can be met by a decision support framework based on near-optimal "satisficing" as opposed to purely optimal decision making techniques. Currently, such a comprehensive design framework is lacking, which is the basis for undertaking this research. The primary objective of this research is to facilitate a complementary relationship between designers and computers for Multi-Criterion Decision Making (MCDM) during high performance building design. It is based on the application of Monte Carlo approaches to create a database of solutions using deterministic whole building energy simulations, along with data mining methods to rank variable importance and reduce the multi-dimensionality of the problem. A novel interactive visualization approach is then proposed which uses regression based models to create dynamic interplays of how varying these important variables affect the multiple criteria, while providing a visual range or band of variation of the different design parameters. The MCDM process has been incorporated into an alternative methodology for high performance building design referred to as Visual Analytics based Decision Support Methodology [VADSM]. VADSM is envisioned to be most useful during the conceptual and early design performance modeling stages by providing a set of potential solutions that can be analyzed further for final design selection. The proposed methodology can be used for new building design synthesis as well as evaluation of retrofits and operational deficiencies in existing buildings.
ContributorsDutta, Ranojoy (Author) / Reddy, T Agami (Thesis advisor) / Runger, George C. (Committee member) / Addison, Marlin S. (Committee member) / Arizona State University (Publisher)
Created2013
152196-Thumbnail Image.png
Description
Objectives: Although childhood obesity has received growing attention, parents still fail to recognize overweight and obesity in their children. Accurate identification of overweight or obesity in their child is associated with the parent's responsiveness to interventions aimed at preventing weight-related health issues. Recent research shows that a child's age and

Objectives: Although childhood obesity has received growing attention, parents still fail to recognize overweight and obesity in their children. Accurate identification of overweight or obesity in their child is associated with the parent's responsiveness to interventions aimed at preventing weight-related health issues. Recent research shows that a child's age and gender are associated with parental misperception of their child's weight status, but little is known about the interaction of these factors across various age groups. This study examined the association between a wide range of parent, child, and household factors and the accuracy of parental perception of their child's body weight status compared to parent-measured body weight status. Methods: Data were collected from a random-digit-dial telephone survey of 1708 households located in five low-income New Jersey cities with large minority populations. A subset of 548 children whose parents completed the survey and returned a worksheet of parent-measured heights and weights were the focus of the analysis. Bivariate and multivariate analyses were performed to determine the factors significantly associated with parental perception of their child's body weight status. Results: Based on parent-measure heights and weights, 36% of the children were overweight or obese (OWOB). Only 21% of OWOB children were perceived by their parents as OWOB. Child gender, child body mass index (BMI) and parent BMI were significant independent predictors of parents' accuracy at perceiving their child's body weight status. Conclusion: Boys, OWOB children, and children of OWOB parents had significantly greater odds of parental underestimation of their body weight status. Parents had better recognition of OWOB in their daughters, especially older daughters, than in their sons, suggesting parental gender bias in identifying OWOB in children. Further research is needed regarding parental gender bias and its implications in OWOB identification in children.
ContributorsBader, Wendy (Author) / Ohri-Vachaspati, Punam (Thesis advisor) / Lloyd, Kristen (Committee member) / Crespo, Noe (Committee member) / Arizona State University (Publisher)
Created2013
152197-Thumbnail Image.png
Description
Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current

Microelectronic industry is continuously moving in a trend requiring smaller and smaller devices and reduced form factors with time, resulting in new challenges. Reduction in device and interconnect solder bump sizes has led to increased current density in these small solders. Higher level of electromigration occurring due to increased current density is of great concern affecting the reliability of the entire microelectronics systems. This paper reviews electromigration in Pb- free solders, focusing specifically on Sn0.7wt.% Cu solder joints. Effect of texture, grain orientation, and grain-boundary misorientation angle on electromigration and intermetallic compound (IMC) formation is studied through EBSD analysis performed on actual C4 bumps.
ContributorsLara, Leticia (Author) / Tasooji, Amaneh (Thesis advisor) / Lee, Kyuoh (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
152200-Thumbnail Image.png
Description
Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in

Magnetic Resonance Imaging using spiral trajectories has many advantages in speed, efficiency in data-acquistion and robustness to motion and flow related artifacts. The increase in sampling speed, however, requires high performance of the gradient system. Hardware inaccuracies from system delays and eddy currents can cause spatial and temporal distortions in the encoding gradient waveforms. This causes sampling discrepancies between the actual and the ideal k-space trajectory. Reconstruction assuming an ideal trajectory can result in shading and blurring artifacts in spiral images. Current methods to estimate such hardware errors require many modifications to the pulse sequence, phantom measurements or specialized hardware. This work presents a new method to estimate time-varying system delays for spiral-based trajectories. It requires a minor modification of a conventional stack-of-spirals sequence and analyzes data collected on three orthogonal cylinders. The method is fast, robust to off-resonance effects, requires no phantom measurements or specialized hardware and estimate variable system delays for the three gradient channels over the data-sampling period. The initial results are presented for acquired phantom and in-vivo data, which show a substantial reduction in the artifacts and improvement in the image quality.
ContributorsBhavsar, Payal (Author) / Pipe, James G (Thesis advisor) / Frakes, David (Committee member) / Kodibagkar, Vikram (Committee member) / Arizona State University (Publisher)
Created2013
152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
152175-Thumbnail Image.png
Description
Objectives Through a cross-sectional observational study, this thesis evaluates the relationship between food insecurity and weight status, eating behaviors, the home food environment, meal planning and preparation, and perceived stress as it relates to predominantly Hispanic/Latino parents in Phoenix, Arizona. The purpose of this study was to address gaps in

Objectives Through a cross-sectional observational study, this thesis evaluates the relationship between food insecurity and weight status, eating behaviors, the home food environment, meal planning and preparation, and perceived stress as it relates to predominantly Hispanic/Latino parents in Phoenix, Arizona. The purpose of this study was to address gaps in the literature by examining differences in "healthy" and "unhealthy" eating behaviors, foods available in the home, how time and low energy impact meal preparation, and the level of stress between food security groups. Methods Parents, 18 years or older, were recruited during two pre-scheduled health fairs, from English as a second language classes, or from the Women, Infants, and Children's clinic at a local community center, Golden Gate Community Center, in Phoenix, Arizona. An interview, electronic, or paper survey were offered in either Spanish or English to collect data on the variables described above. In addition to the survey, height and weight were collected for all participants to determine BMI and weight status. One hundred and sixty participants were recruited. Multivariate linear and logistic regression models, adjusting for weight status, education, race/ethnicity, income level, and years residing in the U.S., were used to assess the relationship between food security status and weight status, eating behaviors, the home food environment, meal planning and preparation, and perceived stress. Results Results concluded that food insecurity was more prevalent among parents reporting lower income levels compared to higher income levels (p=0.017). In adjusted models, higher perceived cost of fruits (p=0.004) and higher perceived level of stress (p=0.001) were associated with food insecurity. Given that the sample population was predominately women, a post-hoc analysis was completed on women only. In addition to the two significant results noted in the adjusted analyses, the women-only analysis revealed that food insecure mothers reported lower amounts of vegetables served with meals (p=0.019) and higher use of fast-food when tired or running late (p=0.043), compared to food secure mothers. Conclusion Additional studies are needed to further assess differences in stress levels between food insecure parents and food insecure parents, with special consideration for directionality and its relationship to weight status.
ContributorsVillanova, Christina (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Vega-Lopez, Sonia (Committee member) / Arizona State University (Publisher)
Created2014
152178-Thumbnail Image.png
Description
The construction industry in India suffers from major time and cost overruns. Data from government and industry reports suggest that projects suffer from 20 to 25 percent time and cost overruns. Waste of resources has been identified as a major source of inefficiency. Despite a substantial increase in the past

The construction industry in India suffers from major time and cost overruns. Data from government and industry reports suggest that projects suffer from 20 to 25 percent time and cost overruns. Waste of resources has been identified as a major source of inefficiency. Despite a substantial increase in the past few years, demand for professionals and contractors still exceeds supply by a large margin. The traditional methods adopted in the Indian construction industry may not suffice the needs of this dynamic environment, as they have produced large inefficiencies. Innovative ways of procurement and project management can satisfy the needs aspired to as well as bring added value. The problems faced by the Indian construction industry are very similar to those faced by other developing countries. The objective of this paper is to discuss and analyze the economic concerns, inefficiencies and investigate a model that both explains the Indian construction industry structure and provides a framework to improve efficiencies. The Best Value (BV) model is examined as an approach to be adopted in lieu of the traditional approach. This could result in efficient construction projects by minimizing cost overruns and delays, which until now have been a rarity.
ContributorsNihas, Syed (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Kashiwagi, Jacob (Committee member) / Arizona State University (Publisher)
Created2013
152180-Thumbnail Image.png
Description
Fruit and vegetable (FV) consumption continues to lag far behind US Department of Agriculture (USDA) recommendations. Interventions targeting individuals' dietary behaviors address only a small fraction of dietary influences. Changing the food environment by increasing availability of and excitement for FV through local food production has shown promise as a

Fruit and vegetable (FV) consumption continues to lag far behind US Department of Agriculture (USDA) recommendations. Interventions targeting individuals' dietary behaviors address only a small fraction of dietary influences. Changing the food environment by increasing availability of and excitement for FV through local food production has shown promise as a method for enhancing intake. However, the extent to which local production is sufficient to meet recommended FV intakes, or actual intakes, of specific populations remains largely unconsidered. This study was the first of its kind to evaluate the capacity to support FV intake of Arizona's population with statewide production of FV. We created a model to evaluate what percentage of Dietary Guidelines for Americans (DGA) recommendations, as well as actual consumption, state-level FV production could meet in a given year. Intake and production figures were amended to include estimates of only fresh, non-tropical FV. Production was then estimated by month and season to illustrate fluctuations in availability of FV. Based on our algorithm, Arizona production met 184.5% of aggregate fresh vegetable recommendations, as well as 351.9% of estimated intakes of Arizonans, but met only 29.7% of recommended and 47.8% of estimated intake of fresh, non-tropical fruit. Much of the excess vegetable production can be attributed to the dark-green vegetable sub-group category, which could meet 3204.6% and 3160% of Arizonans' aggregated recommendations and estimated intakes, respectively. Only minimal seasonal variations in the total fruit and total vegetable categories were found, but production of the five vegetable sub-groups varied between the warm and cool seasons by 19-98%. For example, in the starchy vegetable group, cool season (October to March) production met only 3.6% of recommendations, but warm season (April to November) production supplied 196.5% of recommendations. Results indicate that Arizona agricultural production has the capacity to meet a large proportion of the population's FV needs throughout much of the year, while at the same time remaining a major producer of dark-green vegetables for out-of-state markets.
ContributorsVaudrin, Nicole (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Villalobos, J. Rene (Committee member) / Arizona State University (Publisher)
Created2013
152181-Thumbnail Image.png
Description
The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the

The objective of this thesis was to compare various approaches for classification of the `good' and `bad' parts via non-destructive resonance testing methods by collecting and analyzing experimental data in the frequency and time domains. A Laser Scanning Vibrometer was employed to measure vibrations samples in order to determine the spectral characteristics such as natural frequencies and amplitudes. Statistical pattern recognition tools such as Hilbert Huang, Fisher's Discriminant, and Neural Network were used to identify and classify the unknown samples whether they are defective or not. In this work, a Finite Element Analysis software packages (ANSYS 13.0 and NASTRAN NX8.0) was used to obtain estimates of resonance frequencies in `good' and `bad' samples. Furthermore, a system identification approach was used to generate Auto-Regressive-Moving Average with exogenous component, Box-Jenkins, and Output Error models from experimental data that can be used for classification
ContributorsJameel, Osama (Author) / Redkar, Sangram (Thesis advisor) / Arizona State University (Publisher)
Created2013
152185-Thumbnail Image.png
Description
Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e. Sprayed Polyurethane Foam Roofs (SPF roofs). Thirty seven urethane coated SPF roofs that were installed in 2005 / 2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of 4 year, 6 year and 7 year marks. A repairing criteria was established after a 6 year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time of installation factors i.e. contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs whereas the contractor and the season when the roof was installed did affect the quality of the roofs.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2013