Matching Items (2)
Filtering by

Clear all filters

163900-Thumbnail Image.png
Description

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical

This Project Report documents the accomplishments of an extraordinary group of students, faculty, and staff at the Arizona state University, who participated in a year-long, multidisciplinary, first-of-its-kind academic endeavor entitled “The Making of a COVID Lab.” The lab that is the focus of this project is the ASU Biodesign Clinical Testing Laboratory, known simply as the ABCTL.

ContributorsCompton, Carolyn C. (Project director) / Christianson, Serena L. (Project director) / Floyd, Christopher (Project director) / Schneller, Eugene S (Research team head) / Rigoni, Adam (Research team head) / Stanford, Michael (Research team head) / Cheong, Pauline (Research team head) / McCarville, Daniel R. (Research team head) / Dudley, Sean (Research team head) / Blum, Nita (Research team head) / Magee, Mitch (Research team head) / Agee, Claire (Research team member) / Cosgrove, Samuel (Research team member) / English, Corinne (Research team member) / Mattson, Kyle (Research team member) / Qian, Michael (Research team member) / Espinoza, Hale Anna (Research team member) / Filipek, Marina (Research team member) / Jenkins, Landon James (Research team member) / Ross, Nathaniel (Research team member) / Salvatierra, Madeline (Research team member) / Serrano, Osvin (Research team member) / Wakefield, Alex (Research team member) / Calo, Van Dexter (Research team member) / Nofi, Matthew (Research team member) / Raymond, Courtney (Research team member) / Barwey, Ishna (Research team member) / Bruner, Ashley (Research team member) / Hymer, William (Research team member) / Krell, Abby Elizabeth (Research team member) / Lewis, Gabriel (Research team member) / Myers, Jack (Research team member) / Ramesh, Frankincense (Research team member) / Reagan, Sage (Research team member) / Kandan, Mani (Research team member) / Knox, Garrett (Research team member) / Leung, Michael (Research team member) / Schmit, Jacob (Research team member) / Woo, Sabrina (Research team member) / Anderson, Laura (Research team member) / Breshears, Scott (Research team member) / Majhail, Kajol (Research team member) / Ruan, Ellen (Research team member) / Smetanick, Jennifer (Research team member) / Bardfeld, Sierra (Research team member) / Cura, Joriel (Research team member) / Dholaria, Nikhil (Research team member) / Foote, Hannah (Research team member) / Liu, Tara (Research team member) / Raymond, Julia (Research team member) / Varghese, Mahima (Research team member)
Created2021
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12