Matching Items (3)
Filtering by

Clear all filters

136726-Thumbnail Image.png
DescriptionThis is a project to create an electric field sensing system which is fully portable. This system should provide accurate electric field readings from transmission lines allowing abstraction to find the voltage on the transmission line.
ContributorsScowen, Kegan (Co-author) / Vora, Sandeep (Co-author) / Ye, Weidong (Co-author) / Sciacca, Jacob (Co-author) / Allee, David (Thesis director) / Karady, George (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Electrical Engineering Program (Contributor)
Created2014-12
136362-Thumbnail Image.png
Description
Foveal sensors employ a small region of high acuity (the foveal region) surrounded by a periphery of lesser acuity. Consequently, the output map that describes their sensory acuity is nonlinear, rendering the vast corpus of linear system theory inapplicable immediately to the state estimation of a target being tracked by

Foveal sensors employ a small region of high acuity (the foveal region) surrounded by a periphery of lesser acuity. Consequently, the output map that describes their sensory acuity is nonlinear, rendering the vast corpus of linear system theory inapplicable immediately to the state estimation of a target being tracked by such a sensor. This thesis treats the adaptation of the Kalman filter, an iterative optimal estimator for linear-Gaussian dynamical systems, to enable its application to the nonlinear problem of foveal sensing. Results of simulations conducted to evaluate the effectiveness of this algorithm in tracking a target are presented, culminating in successful tracking for motion in two dimensions.
Created2015-05
127819-Thumbnail Image.png
Description

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center.

The Future of Wastewater Sensing workshop is part of a collaboration between Arizona State University Center for Nanotechnology in Society in the School for the Future of Innovation in Society, the Biodesign Institute’s Center for Environmental Security, LC Nano, and the Nano-enabled Water Treatment (NEWT) Systems NSF Engineering Research Center. The Future of Wastewater Sensing workshop explores how technologies for studying, monitoring, and mining wastewater and sewage sludge might develop in the future, and what consequences may ensue for public health, law enforcement, private industry, regulations and society at large. The workshop pays particular attention to how wastewater sensing (and accompanying research, technologies, and applications) can be innovated, regulated, and used to maximize societal benefit and minimize the risk of adverse outcomes, when addressing critical social and environmental challenges.

ContributorsWithycombe Keeler, Lauren (Researcher) / Halden, Rolf (Researcher) / Selin, Cynthia (Researcher) / Center for Nanotechnology in Society (Contributor)
Created2015-11-01