Matching Items (4)
Filtering by

Clear all filters

153937-Thumbnail Image.png
Description
The International Standards Organization (ISO) documentation utilizes Fitts’ law to determine the usability of traditional input devices like mouse and touchscreens for one- or two-dimensional operations. To test the hypothesis that Fitts’ Law can be applied to hand/air gesture based computing inputs, Fitts’ multi-directional target acquisition task is applied to

The International Standards Organization (ISO) documentation utilizes Fitts’ law to determine the usability of traditional input devices like mouse and touchscreens for one- or two-dimensional operations. To test the hypothesis that Fitts’ Law can be applied to hand/air gesture based computing inputs, Fitts’ multi-directional target acquisition task is applied to three gesture based input devices that utilize different technologies and two baseline devices, mouse and touchscreen. Three target distances and three target sizes were tested six times in a randomized order with a randomized order of the five input technologies. A total of 81 participants’ data were collected for the within subjects design study. Participants were instructed to perform the task as quickly and accurately as possible according to traditional Fitts’ testing procedures. Movement time, error rate, and throughput for each input technology were calculated.

Additionally, no standards exist for equating user experience with Fitts’ measures such as movement time, throughput, and error count. To test the hypothesis that a user’s experience can be predicted using Fitts’ measures of movement time, throughput and error count, an ease of use rating using a 5-point scale for each input type was collected from each participant. The calculated Mean Opinion Scores (MOS) were regressed on Fitts’ measures of movement time, throughput, and error count to understand the extent to which they can predict a user’s subjective rating.
ContributorsBurno, Rachael A (Author) / Wu, Bing (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2015
154219-Thumbnail Image.png
Description
ABSTRACT

The present studies investigated the separate effects of two types of visual feedback delay – increased latency and decreased updating rate – on performance – both actual (e.g. response time) and subjective (i.e. rating of perceived input device performance) – in 2-dimensional pointing tasks using a mouse as an input

ABSTRACT

The present studies investigated the separate effects of two types of visual feedback delay – increased latency and decreased updating rate – on performance – both actual (e.g. response time) and subjective (i.e. rating of perceived input device performance) – in 2-dimensional pointing tasks using a mouse as an input device. The first sub-study examined the effects of increased latency on performance using two separate experiments. In the first experiment the effects of constant latency on performance were tested, wherein participants completed blocks of trials with a constant level of latency. Additionally, after each block, participants rated their subjective experience of the input device performance at each level of latency. The second experiment examined the effects of variable latency on performance, where latency was randomized within blocks of trials.

The second sub-study investigated the effects of decreased updating rates on performance in the same manner as the first study, wherein experiment one tested the effect of constant updating rate on performance as well as subjective rating, and experiment two tested the effect of variable updating rate on performance. The findings suggest that latency is negative correlated with actual performance as well as subjective ratings of performance, and updating rate is positively correlated with actual performance as well as subjective ratings of performance.
ContributorsBrady, Kyle J (Author) / Wu, Bing (Thesis advisor) / Hout, Michael C (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2015
153204-Thumbnail Image.png
Description
As technology increases, so does the concern that the humanlike virtual characters and android robots being created today will fall into the uncanny valley. The current study aims to determine whether uncanny feelings from modern virtual characters and robots can be significantly affected by the mere exposure effect.

As technology increases, so does the concern that the humanlike virtual characters and android robots being created today will fall into the uncanny valley. The current study aims to determine whether uncanny feelings from modern virtual characters and robots can be significantly affected by the mere exposure effect. Previous research shows that mere exposure can increase positive feelings toward novel stimuli (Zajonc, 1968). It is predicted that the repeated exposure to virtual characters and robots can cause a significant decrease in uncanny feelings. The current study aimed to show that modern virtual characters and robots possessing uncanny traits will be rated significantly less uncanny after being viewed multiple times.
ContributorsCorral, Christopher (Author) / Song, Hyunjin (Thesis advisor) / Wu, Bing (Committee member) / Kuzel, Michael (Committee member) / Arizona State University (Publisher)
Created2014
128945-Thumbnail Image.png
Description

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat

Summer daytime cooling efficiency of various land cover is investigated for the urban core of Phoenix, Arizona, using the Local-Scale Urban Meteorological Parameterization Scheme (LUMPS). We examined the urban energy balance for 2 summer days in 2005 to analyze the daytime cooling-water use tradeoff and the timing of sensible heat reversal at night. The plausibility of the LUMPS model results was tested using remotely sensed surface temperatures from Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery and reference evapotranspiration values from a meteorological station. Cooling efficiency was derived from sensible and latent heat flux differences. The time when the sensible heat flux turns negative (sensible heat flux transition) was calculated from LUMPS simulated hourly fluxes. Results indicate that the time when the sensible heat flux changes direction at night is strongly influenced by the heat storage capacity of different land cover types and by the amount of vegetation. Higher heat storage delayed the transition up to 3 h in the study area, while vegetation expedited the sensible heat reversal by 2 h. Cooling efficiency index results suggest that overall, the Phoenix urban core is slightly more efficient at cooling than the desert, but efficiencies do not increase much with wet fractions higher than 20%. Industrial sites with high impervious surface cover and low wet fraction have negative cooling efficiencies. Findings indicate that drier neighborhoods with heterogeneous land uses are the most efficient landscapes in balancing cooling and water use in Phoenix. However, further factors such as energy use and human vulnerability to extreme heat have to be considered in the cooling-water use tradeoff, especially under the uncertainties of future climate change.

ContributorsMiddel, Ariane (Author) / Brazel, Anthony J. (Author) / Kaplan, Shai (Author) / Myint, Soe W. (Author)
Created2012-08-12