Matching Items (6)
Filtering by

Clear all filters

Does School Participatory Budgeting Increase Students’ Political Efficacy? Bandura’s “Sources,” Civic Pedagogy, and Education for Democracy
Description

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy

Does school participatory budgeting (SPB) increase students’ political efficacy? SPB, which is implemented in thousands of schools around the world, is a democratic process of deliberation and decision-making in which students determine how to spend a portion of the school’s budget. We examined the impact of SPB on political efficacy in one middle school in Arizona. Our participants’ (n = 28) responses on survey items designed to measure self-perceived growth in political efficacy indicated a large effect size (Cohen’s d = 1.46), suggesting that SPB is an effective approach to civic pedagogy, with promising prospects for developing students’ political efficacy.

ContributorsGibbs, Norman P. (Author) / Bartlett, Tara Lynn (Author) / Schugurensky, Daniel, 1958- (Author)
Created2021-05-01
131685-Thumbnail Image.png
Description
Anthropogenic climate change caused by increasing carbon emissions poses a threat to nearly every living organism. One consequence of these emissions is ocean acidification (OA). While OA has been shown to directly inhibit growth in calcifying animals, it might also have negative effects on other marine life. I conducted a

Anthropogenic climate change caused by increasing carbon emissions poses a threat to nearly every living organism. One consequence of these emissions is ocean acidification (OA). While OA has been shown to directly inhibit growth in calcifying animals, it might also have negative effects on other marine life. I conducted a systematic quantitative literature review on the effects of OA on fish behavior. The review consisted of 29 peer-reviewed, published journal articles. Most articles report some degree of negative impact of OA. Impacts include sensory impairment, erratic swimming patterns and attraction to predators. Many studies report insignificant impacts, thus continued research is needed to understand the consequences of human behavior and assist in mitigating our impact.
ContributorsKubiak, Allison Noelle (Co-author) / Kubiak, Allison (Co-author) / Gerber, Leah (Thesis director) / Eikenberry, Steffen (Committee member) / Kelman, Jonathan (Committee member) / School of Sustainability (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
ContributorsMancuso, Marina (Author) / Milner, Fabio A (Thesis advisor) / Kuang, Yang (Committee member) / Kostelich, Eric (Committee member) / Eikenberry, Steffen (Committee member) / Manore, Carrie (Committee member) / Arizona State University (Publisher)
Created2023
Description

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural

Climate is a critical determinant of agricultural productivity, and the ability to accurately predict this productivity is necessary to provide guidance regarding food security and agricultural management. Previous predictions vary in approach due to the myriad of factors influencing agricultural productivity but generally suggest long-term declines in productivity and agricultural land suitability under climate change. In this paper, I relate predicted climate changes to yield for three major United States crops, namely corn, soybeans, and wheat, using a moderate emissions scenario. By adopting data-driven machine learning approaches, I used the following machine learning methods: random forest (RF), extreme gradient boosting (XGB), and artificial neural networks (ANN) to perform comparative analysis and ensemble methodology. I omitted the western US due to the region's susceptibility to water stress and the prevalence of artificial irrigation as a means to compensate for dry conditions. By considering only climate, the model's results suggest an ensemble mean decline in crop yield of 23.4\% for corn, 19.1\% for soybeans, and 7.8\% for wheat between the years of 2017 and 2100. These results emphasize potential negative impacts of climate change on the current agricultural industry as a result of shifting bio-climactic conditions.

ContributorsSwarup, Shray (Author) / Eikenberry, Steffen (Thesis director) / Mahalov, Alex (Committee member) / Barrett, The Honors College (Contributor) / Computer Science and Engineering Program (Contributor)
Created2023-05
Description
Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural

Since the 20th century, Arizona has undergone shifts in agricultural practices, driven by urban expansion and crop irrigation regulations. These changes present environmental challenges, altering atmospheric processes and influencing climate dynamics. Given the potential threats of climate change and drought on water availability for agriculture, further modifications in the agricultural landscape are expected. To understand these land use changes and their impact on carbon dynamics, our study quantified aboveground carbon storage in both cultivated and abandoned agricultural fields. To accomplish this, we employed Python and various geospatial libraries in Jupyter Notebook files, for thorough dataset assembly and visual, quantitative analysis. We focused on nine counties known for high cultivation levels, primarily located in the lower latitudes of Arizona. Our analysis investigated carbon dynamics across not only abandoned and actively cultivated croplands but also neighboring uncultivated land, for which we estimated the extent. Additionally, we compared these trends with those observed in developed land areas. The findings revealed a hierarchy in aboveground carbon storage, with currently cultivated lands having the lowest levels, followed by abandoned croplands and uncultivated wilderness. However, wilderness areas exhibited significant variation in carbon storage by county compared to cultivated and abandoned lands. Developed lands ranked highest in aboveground carbon storage, with the median value being the highest. Despite county-wide variations, abandoned croplands generally contained more carbon than currently cultivated areas, with adjacent wilderness lands containing even more than both. This trend suggests that cultivating croplands in the region reduces aboveground carbon stores, while abandonment allows for some replenishment, though only to a limited extent. Enhancing carbon stores in Arizona can be achieved through active restoration efforts on abandoned cropland. By promoting native plant regeneration and boosting aboveground carbon levels, these measures are crucial for improving carbon sequestration. We strongly advocate for implementing this step to facilitate the regrowth of native plants and enhance overall carbon storage in the region.
ContributorsGoodwin, Emily (Author) / Eikenberry, Steffen (Thesis director) / Kuang, Yang (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor)
Created2024-05
153803-Thumbnail Image.png
Description
These are unprecedented times. Like never before, humans, having separated themselves from the web of life through the skillful use of their opposable thumbs, have invented the means of extinction and have systematized it for the benefit of the few at the expense of all else. Yet humans are also

These are unprecedented times. Like never before, humans, having separated themselves from the web of life through the skillful use of their opposable thumbs, have invented the means of extinction and have systematized it for the benefit of the few at the expense of all else. Yet humans are also designing fixes and alternatives that will soon overcome the straight line trajectory to ugliness and loss that the current order would lead the rest of humanity through. The works in this dissertation are connected by two themes: (1) those humans who happen to be closely connected to the lands, waters and wildlife, through millennia of adaptation and inventive association, have a great deal to share with the rest, who, through history have become distanced from the lands and waters and wildlife they came from; and (2) as the inheritors of all the insults that the current disrespectful and wasteful system is heaping upon all true sensibilities, young people, who are Indigenous, and who are the critical generation for biocultural survival, have an immense role to play - for their cultures, and for all of the rest. The survivance of autochthonous culture through intergenerational conduct of cultural practice and spirituality is profoundly affected by fundamental physical factors of resilience related to food, water, and energy security, and the intergenerational participation of youth. So this work is not so much an indictment of the system as it is an attempt to reveal at least two ways that the work of these young Indigenous people can be expedited: through the transformation of their education so that more of their time as youths is spent focusing on the wonderful attributes of their cultural associations with the lands, waters, and wildlife; and through the creation of a self-sustaining youth owned and operated enterprise that provides needed services to communities so they can adapt to and mitigate the increasingly variable, unpredictable, and dangerous effects and impacts of global heating and climate disruption.
ContributorsEricson, Mark (Author) / Brayboy, Bryan (Thesis advisor) / Sumida Huaman, Elizabeth (Thesis advisor) / Swadener, Elizabeth (Committee member) / Schugurensky, Daniel, 1958- (Committee member) / Arizona State University (Publisher)
Created2015