Matching Items (2)
Filtering by

Clear all filters

191031-Thumbnail Image.png
Description
Inequities and exclusions, compounded by the increasing intensity of extreme weather events, pose significant challenges to urban planning for low-elevation coastal zones (LECZ). Inclusive development (ID) and urban flood resilience (UFR) have emerged as widely endorsed solutions by scholars. Granting that they gain substantial support and enthusiasm, they have the

Inequities and exclusions, compounded by the increasing intensity of extreme weather events, pose significant challenges to urban planning for low-elevation coastal zones (LECZ). Inclusive development (ID) and urban flood resilience (UFR) have emerged as widely endorsed solutions by scholars. Granting that they gain substantial support and enthusiasm, they have the potential to transform vulnerable urban areas. While their noble intentions are commendable, the intricacies of ID cannot be overlooked, as UFR often inherits and perpetuates the inequalities ingrained in conventional development paradigms. Given the critical importance of ID and UFR in contemporary urban planning, my dissertation research devolved into their fusion by answering my main research question, what constitutes inclusive urban flood resilience? This investigation was carried out through a series of four secondary research questions distributed over three academic papers, each contributing a unique perspective and insights to this burgeoning field. Through a systematic literature review and employing bibliometric and thematic analyses, Chapter 2 offers a comprehensive understanding of inclusive development and a refined definition of the concept. Subsequently, taking Georgetown, the capital city of Guyana, as a case study, Chapter 3 estimates its UFR and employs dimensionality reduction by way of principal component analysis to present these findings in a transparent manner. Chapter 4 builds on the findings of the previous chapters, by first presenting a novel approach to evaluate inclusive development within the framework of the results of Chapter 2, and secondly, together with a systematic meta-analysis of flood resilience measurements, it offers an examination of the ID-UFR nexus. The findings suggest that the concept of inclusive development is nuanced by context-specific definitions, that flood resilience in Georgetown varies among its sub-districts, and that city dimensions (natural, built, social, economic, and institutional), as assessed by pooling global studies, do not share synergistic relationships, being a measure of inclusive development. These findings are critical to urban planning in Georgetown and similar contexts globally as they provide data-driven guidance for understanding these concepts and applying them toward developing inclusive and flood-resilient cities and communities.
ContributorsRenville, Dwayne (Author) / Cheng, Chingwen (Thesis advisor) / Vogel, Kathleen (Thesis advisor) / Chhetri, Netra (Committee member) / Zeng, Ruijie (Committee member) / Arizona State University (Publisher)
Created2023
157262-Thumbnail Image.png
Description
Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring

Cities are increasingly using nature-based approaches to address urban sustainability challenges. These solutions leverage the ecological processes associated with existing or newly constructed Urban Ecological Infrastructure (UEI) to address issues through ecosystem services (e.g. stormwater retention or treatment). The growing use of UEI to address urban sustainability challenges can bring together teams of urban researchers and practitioners to co-produce UEI design, monitoring and maintenance. However, this co-production process received little attention in the literature, and has not been studied in the Phoenix Metro Area.

I examined several components of a co-produced design process and related project outcomes associated with a small-scale UEI project – bioswales installed at the Arizona State University (ASU) Orange Mall and Student Pavilion in Tempe, AZ. Specifically, I explored the social design process and ecohydrological and biogeochemical outcomes associated with development of an ecohydrological monitoring protocol for assessing post-construction landscape performance of this site. The monitoring protocol design process was documented using participant observation of collaborative project meetings, and semi-structured interviews with key researchers and practitioners. Throughout this process, I worked together with researchers and practitioners to co-produced a suite of ecohydrological metrics to monitor the performance of the bioswales (UEI) constructed at Orange Mall, with an emphasis on understanding stormwater dynamics. I then installed and operated monitoring equipment from Summer 2018 to Spring 2019 to generate data that can be used to assess system performance with respect to the co-identified performance metrics.

The co-production experience resulted in observable change in attitudes both at the individual and institutional level with regards to the integration and use of urban ecological research to assess and improve UEI design. My ecological monitoring demonstrated that system performance met design goals with regards to stormwater capture, and water quality data suggest the system’s current design has some capacity for stormwater treatment. These data and results are being used by practitioners at ASU and their related design partners to inform future design and management of UEI across the ASU campus. More broadly, this research will provide insights into improving the monitoring, evaluation, and performance efficacy associated with collaborative stormwater UEI projects, independent of scale, in arid cities.
ContributorsSanchez, Christopher A (Author) / Childers, Daniel L. (Thesis advisor) / Cheng, Chingwen (Committee member) / York, Abigail M (Committee member) / Arizona State University (Publisher)
Created2019