Matching Items (15)
Filtering by

Clear all filters

149729-Thumbnail Image.png
Description
Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of

Division of labor, whereby different group members perform different functions, is a fundamental attribute of sociality. It appears across social systems, from simple cooperative groups to complex eusocial colonies. A core challenge in sociobiology is to explain how patterns of collective organization are generated. Theoretical models propose that division of labor self-organizes, or emerges, from interactions among group members and the environment; division of labor is also predicted to scale positively with group size. I empirically investigated the emergence and scaling of division of labor in evolutionarily incipient groups of sweat bees and in eusocial colonies of harvester ants. To test whether division of labor is an emergent property of group living during early social evolution, I created de novo communal groups of the normally solitary sweat bee Lasioglossum (Ctenonomia) NDA-1. A division of labor repeatedly arose between nest excavation and guarding tasks; results were consistent with hypothesized effects of spatial organization and intrinsic behavioral variability. Moreover, an experimental increase in group size spontaneously promoted higher task specialization and division of labor. Next, I examined the influence of colony size on division of labor in larger, more integrated colonies of the harvester ant Pogonomyrmex californicus. Division of labor scaled positively with colony size in two contexts: during early colony ontogeny, as colonies grew from tens to hundreds of workers, and among same-aged colonies that varied naturally in size. However, manipulation of colony size did not elicit a short-term response, suggesting that the scaling of division of labor in P. californicus colonies is a product of functional integration and underlying developmental processes, rather than a purely emergent epiphenomenon. This research provides novel insights into the organization of work in insect societies, and raises broader questions about the role of size in sociobiology.
ContributorsHolbrook, Carter Tate (Author) / Fewell, Jennifer H (Thesis advisor) / Gadau, Jürgen (Committee member) / Harrison, Jon F. (Committee member) / Hölldobler, Berthold (Committee member) / Johnson, Robert A. (Committee member) / Arizona State University (Publisher)
Created2011
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
133747-Thumbnail Image.png
Description
Background Osteoporosis is a major health problem that can occur in people of all ages. It can stem from poor bone health during childhood and adolescence. It hinders independent living, impacts social living, reduces participation in physical activity, and increases risk of fractures and physical pain. In addition to age,

Background Osteoporosis is a major health problem that can occur in people of all ages. It can stem from poor bone health during childhood and adolescence. It hinders independent living, impacts social living, reduces participation in physical activity, and increases risk of fractures and physical pain. In addition to age, gender, race, physical activity and diet, sleep is considered to be a risk factor in the development of osteoporosis in both the young and elderly population. Bone-specific alkaline phosphatase, a bone formation biomarker was measured to determine osteoporotic risk while an actigraphy device was used to measure sleep efficiency in college students. Objective The purpose of this study is to evaluate the relationship between sleep efficiency and bone-specific alkaline phosphatase levels. Recognition of any association may help in understanding how sleep is related to bone health. Methods Twenty-seven participants were recruited with the use of flyers distributed on campus and in residential halls, social media, email, and student newsletters. Bone-specific alkaline phosphatase biomarker was measured using human specific enzyme-linked immunosorbent assay (ELISA). Sleep data were collected from participants who wore ActiWatch for 7 days and completed a 7-night sleep diary. Linear and multiple regression analysis were performed to evaluate association between B-ALP (outcome) and sleep efficiency while adjusting for covariates (age, BMI, race, gender). Results and Conclusions Overall, there was no significant association between sleep efficiency and bone-specific alkaline phosphatase. Gender, however, showed a significant influence on the levels of bone-alkaline phosphatase. This is supported by a study that found higher bone turnover marker in males than in females. The result from the study could be due to limitations such as small sample size. More participants may provide a better comparison or association between variables. Genetic factors are believed to influence the outcome of the study as genetics can influence rate of bone loss or formation. Findings may be beneficial for public health and policy initiatives and allow health / nutrition educators to more adequately encourage proper habits such as physical activity, healthy diet and sufficient sleep for good bone health.
ContributorsLadipo, Evelyn Irawola (Author) / Whisner, Corrie (Thesis director) / Mahmood, Tara (Committee member) / School of Life Sciences (Contributor) / School of Nutrition and Health Promotion (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134371-Thumbnail Image.png
Description

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and

Sleep is imperative for health and wellness with direct impacts on brain function, physiology, emotional well-being, performance and safety when compromised. Adolescents and young adults are increasingly affected by factors affecting the maintenance of regular sleep schedules. College and university students are a potentially vulnerable population to sleep deprivation and sleep insufficiency. Possible factors that could contribute to poor sleep hygiene include, but are not limited to, academic pressures, social activities, and increased screen time. Arguably, students are still experiencing bone mineralization, until the age of 30 or even 40 years old, which makes it more important to understand the effects that altered sleep patterns could have on continued development of bone health. It is our understanding that to date, studies assessing the risk of sleep insufficiency on bone mineral density in college students have not been conducted. We hypothesized that college-aged students, between the ages of 18-25 years, with shorter sleep durations, greater sleep schedule variability, and poorer sleep environments will have significantly lower bone mineral density. ActiGraph monitoring, via a wrist ActiWatch was used to quantitatively measure sleep habits for up to 7 consecutive days. During the week-long study participants also captured their self-reported sleep data through the use of a sleep diary. Participants were measured one time within the study for bone mineral density of the lumbar spine and total hip through a dual energy x-ray absorptiometry. This was a preliminary analysis of a larger cross-sectional analysis looked at 17 participants, of which there were 14 females and 3 males, (n=5, 1 and 11 Hispanic, Black and White, respectively). The mean age of participants was 20.8±1.7 y with an average BMI of 22.9±3.2 kg/m2. ActiWatch measurement data showed a mean daily sleep duration of participants to be 437.5 ± 43.1 (372.5 – 509.4) minutes. Mean sleep efficiency (minutes of sleep divided by minutes of time in bed) and mean number of awakenings were 87.4±4.3 (75.4-93.4) minutes and 32.1±6.4 (22.3-42.7) awakenings, respectively. The median time for wake after sleep onset (WASO) was 34.5±10.5 (18.3-67.4) minutes. The mean bone mineral density (BMD) for the hips was 1.06±0.14 (0.81-1.28) g/cm2 with a mean BMD of the lumbar spine being 1.24±0.12 (0.92-1.43) g/cm2. Age-matched Z-scores of the hips was 0.31±0.96 (-1.6-2.1) and lumbar spine was 0.53 (IQR: 0.13, 0.98; -2.25-1.55). Neither sleep duration nor sleep efficiency was significantly correlated to BMD of either locations. While WASO was positively associated with hip and spine BMD, this value was not statistically significant in this population. Overall, associations between sleep and BMD of the femur and spine were not seen in this cohort. Further work utilizing a larger cohort will allow for control of covariates while looking for potential associations between bone health, sleep duration and efficiency.

ContributorsEsch, Patricia Rose (Author) / Whisner, Corrie (Thesis director) / Petrov, Megan (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05
168531-Thumbnail Image.png
Description
Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique

Understanding why animals form social groups is a fundamental aim of sociobiology. To date, the field has been dominated by studies of kin groups, which have emphasized indirect fitness benefits as key drivers of grouping among relatives. Nevertheless, many animal groups are comprised of unrelated individuals. These cases provide unique opportunities to illuminate drivers of social evolution beyond indirect fitness, especially ecological factors. This dissertation combines behavioral, physiological, and ecological approaches to explore the conditions that favor group formation among non-kin, using as a model the facultatively social carpenter bee, Xylocopa sonorina. Using behavioral and genetic techniques, I found that nestmates in this species are often unrelated, and that non-kin groups form following extensive inter-nest migration.Group living may arise as a strategy to mitigate constraints on available breeding space. To test the hypothesis that nest construction is prohibitively costly for carpenter bees, I measured metabolic rates of excavating bees and used imaging techniques to quantify nest volumes. From these measurements, I found that nest construction is highly energetically costly, and that bees who inherit nests through social queuing experience substantial energetic savings. These costs are exacerbated by limitations on the reuse of existing nests. Using repeated CT scans of nesting logs, I examined changes in nest architecture over time and found that repeatedly inherited tunnels become indefensible to intruders, and are subsequently abandoned. Together, these factors underlie intense competition over available breeding space. The imaging analysis of nesting logs additionally revealed strong seasonal effects on social strategy, with social nesting dominating during winter. To test the hypothesis that winter social nesting arises from intrinsic physiological advantages of grouping, I experimentally manipulated social strategy in overwintering bees. I found that social bees conserve heat and body mass better than solitary bees, suggesting fitness benefits to grouping in cold, resource-scarce conditions. Together, these results suggest that grouping in X. sonorina arises from dynamic strategies to maximize direct fitness in response to harsh and/or competitive conditions. These studies provide empirical insights into the ecological conditions that favor non-kin grouping, and emphasize the importance of ecology in shaping sociality at its evolutionary origins.
ContributorsOstwald, Madeleine (Author) / Fewell, Jennifer H (Thesis advisor) / Amdam, Gro (Committee member) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Kapheim, Karen (Committee member) / Arizona State University (Publisher)
Created2022
187874-Thumbnail Image.png
Description
Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence

Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence of specific nutrients and their relative balance. This dissertation explores the role of relative nutrient content in the food selection decisions of a species that is eusocial and also agricultural, the desert leafcutter ant Acromyrmex versicolor. A dietary choice assay, in which the relative amount of protein and carbohydrates in the available diets was varied, demonstrated that A. versicolor colonies regulate relative collection of protein and carbohydrates. Tracking the foraging behavior of individual workers revelaed that foragers vary in their relative collection of experimental diets and in their foraging frequency, but that there is no relationship between these key factors of foraging behavior. The high proportion of carbohydrates preferred by lab colonies suggests that they forage to nutritionally support the fungus rather than brood and workers. To test this, the relative amounts of 1) fungus, and 2) brood (larvae) was manipulated and foraging response was measured. Changing the amount of brood had no effect on foraging. Although decreasing the size of fungus gardens did not change relative P:C collection, it produced significant increases in caloric intake, supporting the assertion that the fungus is the main driver of colony nutrient regulation. The nutritional content of naturally harvested forage material collected from field colonies was measured, as was recruitment to experimental diets with varying relative macronutrient content. Field results confirmed a strong colony preference for high carbohydrate diets. They also indicated that this species may, at times, be limited in its ability to collect sufficiently high levels of carbohydrates to meet optimal intake. This dissertation provides important insights about fundamental aspects of leafcutter ant biology and extends our understanding of the role of relative nutrient content in foraging decisions to systems that span multiple trophic levels.
ContributorsSmith, Nathan Edward (Author) / Fewell, Jennifer H (Thesis advisor) / Harrison, Jon F (Committee member) / Pavlic, Ted (Committee member) / Cease, Arianne (Committee member) / Hoelldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2023
161960-Thumbnail Image.png
Description
In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single,

In many social groups, reproduction is shared between group members, whocompete for position in the social hierarchy for reproductive dominance. This reproductive conflict can lead to different means of enforcing reproductive differences, such as dominance displays or limited control of social hierarchy through antagonistic encounters. In eusocial insects, archetypal colonies contain a single, singly-mated fertile queen, such that no reproductive conflict exists within a colony. However, many eusocial insects deviate from this archetype and have multiply-mated queens (polyandry), multiple queens in a single colony (polygyny), or both. In these cases, reproductive conflict exists between the matrilines and patrilines represented in a colony, specifically over the production of sexual offspring. A possible outcome of reproductive conflict may be the emergence of cheating lineages, which favor the production of sexual offspring, taking advantage of the worker force produced by nestmate queens and/or patrilines. In extreme examples, inquiline social parasites may be an evolutionary consequence of reproductive conflict between nestmate queens. Inquiline social parasitism is a type of social parasitism that is usually defined by a partial or total loss of the worker caste, and the “infiltration” of host colonies to take advantage of the host worker force for reproduction. It has been hypothesized that these inquiline social parasites evolve through the speciation of cheating queen lineages from within their incipient host species. This “intra- specific” origin model involves a foundational hypothesis that the common ancestor of host and parasite (and thus, putatively, the host at the time of speciation) should be functionally polygynous, and that parasitism evolves as a “resolution” of reproductive conflict in colonies. In this dissertation, I investigate the hypothesized role of polygyny in the evolution of inquiline social parasites. I use molecular ecology and statistical approaches to validate the role of polygyny in the evolution of some inquiline social parasites. I further discuss potential mechanisms for the evolution and speciation of social parasites, and discuss future directions to elucidate these mechanisms.
ContributorsDahan, Romain Arvid (Author) / Rabeling, Christian (Thesis advisor) / Amdam, Gro V (Committee member) / Fewell, Jennifer H (Committee member) / Pratt, Stephen C (Committee member) / Rüppell, Olav (Committee member) / Arizona State University (Publisher)
Created2021
166419-Thumbnail Image.png
Description

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome

Obesity increases the risk for colorectal cancer. In mice, a pro-obesity high-fat-diet (HFD) leads to an intestinal phenotype characterized by enhanced proliferation, numbers, function and tumor-initiating capacity of stem cells, the cell-of-origin for many intestinal cancers. This phenotype is driven by a lipid metabolism program facilitated by an intrinsic Peroxisome Proliferator-Activated Receptor/Fatty Acid Oxidation (PPAR/FAO) axis that senses and utilizes cellular lipids. However, the microbiome is a known regulator of lipid metabolism in the gut, but little is understood about how the gut commensals affect access to the lipids and alter stem cell function. Here, we use the long term HFD-fed mouse model to analyze the phenotypic changes in the intestinal stem cells (ISCs) after depletion of the gut microbiota. We find that the loss of the gut microbiome after four weeks of antibiotic treatment imposes significant changes in ISC function leading to reduced HFD ISC regenerative potential. These results indicate that the gut microbiome plays a crucial role in the lipid metabolic process which regulates and maintains the HFD ISC phenotype, and further suggests that the gut microbiome may augment the diet-induced tumor initiating capacity by altering the stem cell function.

ContributorsSantos Molina, Pablo (Author) / Mana, Miyeko (Thesis director) / Whisner, Corrie (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / Historical, Philosophical & Religious Studies, Sch (Contributor)
Created2022-05
153812-Thumbnail Image.png
Description
Objectives

This cross-sectional study sought to assess the eating and physical activity behaviors among in-state and out-of-state college freshmen attending Arizona State University and to determine if social connectedness mediated the relationship between residency status and eating and physical activity behaviors.

Methods

College freshmen from two dormitories were recruited for participation from Arizona

Objectives

This cross-sectional study sought to assess the eating and physical activity behaviors among in-state and out-of-state college freshmen attending Arizona State University and to determine if social connectedness mediated the relationship between residency status and eating and physical activity behaviors.

Methods

College freshmen from two dormitories were recruited for participation from Arizona State University’s Tempe campus. A 128-item survey assessing demographics, college life, eating and physical activity behaviors, and social connectedness was administered. In addition, participants completed up to three days of dietary recall. Multivariate linear regression models, adjusting for age, gender, race, ethnicity, highest parental education, dormitory, Pell grant status, number of dietary recalls, and availability of a weekend day of dietary recall were used to assess the relationships between residency status, social connectedness, and eating and physical activity behaviors.

Results

No associations were observed between residency status and calories, grams and percentage of calories from fat, and added sugar. There was a statistically significant association between residency status and moderate-to-vigorous physical activity (MVPA). In-state students reported 21 minutes less per day of MVPA than out-of-state students did (β=-20.85; 95% CI=-30.68, -11.02; p<0.001). There was no relationship between residency status and social connectedness. Social connectedness and eating and physical activity behaviors were not associated. Social connectedness did not mediate the relationship between residency status and eating and physical activity behaviors.

Conclusions

In-state and out-of-state students differed in their MVPA; however, this relationship was not mediated by social connectedness. Further studies are needed to confirm the relationship between MVPA and residency status. In addition, more studies are needed to assess the relationship between social connectedness and MVPA.
ContributorsNelson, Stephanie A. (Stephanie Anne), 1958- (Author) / Bruening, Meg (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Whisner, Corrie (Committee member) / Arizona State University (Publisher)
Created2016
154341-Thumbnail Image.png
Description
College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and

College weight gain and obesity are significant problems impacting our society, leading to a considerable number of comorbidities during and after college. Gut microbiota are increasingly recognized for their role in obesity and weight gain. Currently, research exploring the gut microbiome and its associations with dietary intake and body mass index (BMI) is limited among this population. Therefore, the purpose of this study was to assess associations between the gut microbiome, BMI, and dietary intake in a population of healthy college students living in two dorms at Arizona State University (n=90). Cross-sectional analyses were undertaken including 24-hour dietary recalls and anthropometrics (height, weight and BMI). High throughput Bacterial 16S rRNA gene sequencing of fecal samples was performed to quantify the gut microbiome and analyses were performed at phyla and family levels. Within this population, the mean BMI was 24.4 ± 5.3 kg/m2 and mean caloric intake was 1684 ± 947 kcals/day. Bacterial community analysis revealed that there were four predominant phyla and 12 predominant families accounting for 99.3% and 97.1% of overall microbial communities, respectively. Results of this study suggested that a significant association occurred between one principal component (impacted most by 22 microbial genera primarily within Firmicutes) and BMI (R2=0.053, p=0.0301). No significant correlations or group differences were observed when assessing the Firmicutes/Bacteroidetes ratio in relation to BMI or habitual dietary intake. These results provide a basis for gut microbiome research in college populations. Although, findings suggest that groups of microbial genera may be most influential in obesity, further longitudinal research is necessary to more accurately describe these associations over me. Findings from future research may be used to develop interventions to shift the gut microbiome to help moderate or prevent excess weight gain during this important life stage.
ContributorsHotz, Ricci-Lee (Author) / Whisner, Corrie (Thesis advisor) / Bruening, Meredith (Committee member) / Vega-Lopez, Sonia (Committee member) / Lespron, Christy (Committee member) / Arizona State University (Publisher)
Created2016