Matching Items (18)
147982-Thumbnail Image.png
Description

Bioluminescent algae has long fascinated humans as a beautiful natural phenomenon. This creative project uses bioluminescent algae to push the limit of biomimicry, using the algae not as a model but as a technology. Through experimentation with algae samples and industrial design, two potential applications of bioluminescent algae as a

Bioluminescent algae has long fascinated humans as a beautiful natural phenomenon. This creative project uses bioluminescent algae to push the limit of biomimicry, using the algae not as a model but as a technology. Through experimentation with algae samples and industrial design, two potential applications of bioluminescent algae as a sustainable lighting technology were generated. One design focuses on indoor, private lighting, while the other focuses on outdoor, public lighting. Both outcomes attempt to solve problems generated by nighttime lighting including light pollution, wasted electricity usage, and negative impacts on human and environmental health while retaining the benefits of safety and convenience.

ContributorsFernald, Isabel (Author) / Shin, Dosun (Thesis director) / Feil, Magnus (Committee member) / The Design School (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
158583-Thumbnail Image.png
Description

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of

Phosphorus (P) is a limiting nutrient in ecosystems and is mainly used as fertilizer to grow food. The demand for P is increasing due to the need for increased food supply to support a growing population. However, P is obtained from phosphate rock, a finite resource that takes millions of years to form. These phosphate rock deposits are found in only a few countries. This uneven distribution of phosphate rock leads to a potential imbalance in socio-economic systems, generating food security pressure due to unaffordability of P fertilizer. Thus, the first P-sustainability concern is a stable supply of affordable P fertilizer for agriculture. In addition, improper management of P from field to fork leaves an open end in the global P cycle that results in widespread water pollution. This eutrophication leads to toxic algal blooms and hypoxic “dead zones”. Thus, the second P-sustainability concern involves P pollution from agriculture and cities. This thesis focuses on P flows in a city (Macau as a case study) and on potential strategies for improvements of sustainable P management in city and agriculture. Chapter 2 showed a P-substance-flow analysis for Macau from 1998-2016. Macau is a city with a unique economy build on tourism. The major P flows into Macau were from food, detergent, and sand (for land reclamation). P recovery from wastewater treatment could enhance Macau’s overall P sustainability if the recovered P could be directed towards replacing mined P used to produce food. Chapters 3 and 4 tested a combination of P sustainability management tactics including recycling P from cities and enhancing P-use efficiency (PUE) in agriculture. Algae and biosolids were used as recycled-P fertilizers, and genetically transformed lettuce was used as the a PUE-enhanced crop. This P sustainable system was compared to the conventional agricultural system using commercial fertilizer and the wild type lettuce. Chapters 3 and 4 showed that trying to combine a PUE-enhancement strategy with P recycling did not work well, although organic fertilizers like algae and biosolids may be more beneficial as part of longer-term agricultural practices. This would be a good area for future research.

ContributorsChan, Neng Iong (Author) / Elser, James J (Thesis advisor) / Rittmann, Bruce E. (Thesis advisor) / Grimm, Nancy (Committee member) / Hall, Sharon J (Committee member) / Arizona State University (Publisher)
Created2020
161935-Thumbnail Image.png
Description
Microalgae offer a unique set of promises and perils for environmental management and sustainable production. Algal blooms are becoming a more frequent phenomenon within water infrastructure. As algae blooms are common, water infrastructure across the world has seen mounting problems associated with algal blooms. Some of these problems include biofouling

Microalgae offer a unique set of promises and perils for environmental management and sustainable production. Algal blooms are becoming a more frequent phenomenon within water infrastructure. As algae blooms are common, water infrastructure across the world has seen mounting problems associated with algal blooms. Some of these problems include biofouling and release of toxins. Since 1997, Arizona’s Central Arizona Project (CAP) has faced escalating problems associated with the algae diatom Cymbella sp. and the green-algae Cladophora glomerata. In this research study, algae are diagramed within the CAP system, the nutrient and abiotic requirements of the diatom Cymbella sp. are determined, and real-time microbial sensors are deployed along the CAP canals for understanding algae blooms and changes in CAP flow conditions. The following research objectives are met: How can water delivery infrastructure improve algae contamination risks in critical water resources? To do this research demonstrates that (i) nuisance algae species within the CAP canals are Cymbella sp. and Cladophora glomerata (ii) that the nuisance “rock-snot” diatom Cymbella sp. is not Cymbella mexicana nor is it Cymbella janischii, but rather a novel Cymbella sp.(iii) that in laboratory settings, Cymbella sp. prefers high Phosphorus and low Nitrogen conditions (iv) that the Cymbella sp. bloom happens in the early summer along the CAP canals (v) that the diatom Cymbella sp. can be removed through chemical treatments (vi) that microbial sensors can measure changes in algae composition along the CAP canals (vii) that microbial sensors, water quality parameters, and weather data can be integrated to measure algae blooms within water systems.
ContributorsMeyer, Harrison (Author) / Weiss, Taylor (Thesis advisor) / Neuer, Suzanne (Committee member) / Abbaszadegan, Morteza (Committee member) / Arizona State University (Publisher)
Created2021
132148-Thumbnail Image.png
Description
Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs

Coral reefs are diverse marine ecosystems, where reef building corals provide both the structure of the habitat as well as the primary production through their symbiotic algae, and alongside algae living on the reef itself, are the basis of the food web of the reef. In this way, coral reefs are the ocean's "forests" and are estimated to support 25% of all marine species. However, due to the large size of a coral reef, the relative inaccessibility and the reliance on in situ surveying methods, our current understanding of reefs is spatially limited. Understanding coral reefs from a more spatially complete perspective will offer insight into the ecological factors that contribute to coral reef vitality. This has become a priority in recent years due to the rapid decline of coral reefs caused by mass bleaching. Despite this urgency, being able to assess the entirety of a coral reef is physically difficult and this obstacle has not yet been overcome. However, similar difficulties have been addressed in terrestrial ecosystems by using remote sensing methods, which apply hyperspectral imaging to assess large areas of primary producers at high spatial resolutions. Adapting this method of remote spectral sensing to assess coral reefs has been suggested, but in order to quantify primary production via hyper spectral imaging, light-use efficiencies (LUEs) of coral reef communities need to be known. LUEs are estimations of the rate of carbon fixation compared to incident absorbed light. Here, I experimentally determine LUEs and report on several parameters related to LUE, namely net productivity, respiration, and light absorbance for the main primary producers in coral reefs surrounding Bermuda, which consist of algae and coral communities. The derived LUE values fall within typical ranges for LUEs of terrestrial ecosystems, with LUE values for coral averaging 0.022 ± 0.002 mol O2 mol photons-1 day-1 at a water flow rate of 17.5 ± 2 cm s^(-1) and 0.049 ± 0.011 mol O2 mol photons-1 day-1 at a flow rate of 32 ± 4 cm s^(-1) LUE values for algae averaged 0.0335 ± 0.0048 mol O2 mol photons-1 day-1 at a flow rate of 17.5 ± 2 cm s^(-1). These values allow insight into coral reef productivity and opens the door for future remote sensing applications.
ContributorsFlesher, David A (Author) / Neuer, Susanne (Thesis director) / Redding, Kevin (Committee member) / School of Molecular Sciences (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132228-Thumbnail Image.png
Description
Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were

Fossil fuels have been the primary source of energy in the world for many decades. However, they are among the top contributors of the greenhouse gas emissions in the atmosphere. The objective of this research was to produce a more environmentally friendly biofuel from Algae-Helix and Salicornia biomasses. Experiments were conducted using a hydrothermal liquefaction (HTL) technique in the HTL reactor to produce biofuel that can potentially replace fossil fuel usage. Hydrothermal Liquefaction is a method used to convert the biomass into the biofuels. HTL experiments on Algae-Helix and Salicornia at 200°C-350°C and 430psi were performed to investigate the effect of temperature on the biocrude yield of the respective biomass used. The effect of the biomass mixture (co-liquefaction) of Salicornia and algae on the amount of biocrude produced was also explored. The biocrude and biochar (by-product) obtained from the hydrothermal liquefaction process were also analyzed using thermogravimetric analyzer (TGA). The maximum biocrude yield for the algae-helix biomass and for the Salicornia biomass were both obtained at 300°C which were 34.63% and 7.65% respectively. The co-liquefaction of the two biomasses by 50:50 provided a maximum yield of 17.26% at 250°C. The co-liquefaction of different ratios explored at 250°C and 300°C concluded that Salicornia to algae-helix ratio of 20:80 produced the highest yields of 22.70% and 31.97%. These results showed that co-liquefaction of biomass if paired well with the optimizing temperature can produce a high biocrude yield. The TGA profiles investigated have shown that salicornia has higher levels of ash content in comparison with the algae-helix. It was then recommended that for a mixture of algae and Salicornia, large-scale biofuel production should be conducted at 250℃ in a 20:80 salicornia to algae biocrude ratio, since it lowers energy needs. The high biochar content left can be recycled to optimize biomass, and prevent wastage.
ContributorsLaideson, Maymary Everrest (Co-author) / Luboowa, Kato (Co-author) / Deng, Shuguang (Thesis director) / Nielsen, David (Committee member) / Chemical Engineering Program (Contributor) / Economics Program in CLAS (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132617-Thumbnail Image.png
Description
The microalgae Scenedesmus have been regarded as a potential source for biofuel production, having up to ~30% of dry weight as lipids used for biodiesel fuel production. Electro-selective fermentation (ESF) is a novel approach that can selectively degrade proteins and carbohydrates while conserving lipids within algal cells, while simultaneously

The microalgae Scenedesmus have been regarded as a potential source for biofuel production, having up to ~30% of dry weight as lipids used for biodiesel fuel production. Electro-selective fermentation (ESF) is a novel approach that can selectively degrade proteins and carbohydrates while conserving lipids within algal cells, while simultaneously enhancing lipid wet-extraction and biohydrogenation. ESF is a combination of SF and Microbial Electrolysis Cell (MEC) technologies. Experiments reported here prove that ESF is an effective means of enhancing lipid wet-extraction by ~50% and achieving 36% higher lipid saturation conversion, compared to SF, over 30 days of semi-continuous operation. Anode-respiring bacteria (ARB) residing on the anode surface produced a current that led to increased rate of organic substrate utilization, protein degradation, and ultimately enhanced lipid extraction and biohydrogenation that converted unsaturated to saturated fatty-acids. Thus, ESF provides a promising method for enhancing lipid extraction for biofuel production.
ContributorsRastogi, Neil K (Author) / Rittmann, Bruce (Thesis director) / Liu, Liu (Committee member) / Chemical Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
Description
The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six

The algal fuel industry has existed since the 1980s without fully commercializing a product. Algal fuels are potentially viable replacements for fossil fuels due to their fast cultivation, high oil content, carbon dioxide sequestration during growth, and ability to be grown on non-arable land. For this thesis, six companies from 61 investigated were interviewed about their history with biofuels, technological changes they have gone through, and views for the future of the industry. All companies interviewed have moved away from fuel production largely due to high production costs and have moved primarily toward pharmaceuticals and animal feed production as well as wastewater treatment. While most do not plan to return to the biofuel industry in the near future, a return would likely require additional legislation, increased technological innovation, and coproduction of multiple products.
ContributorsMassey, Alexandria Rae (Author) / Parker, Nathan (Thesis director) / Agusdinata, Buyung (Committee member) / Chemical Engineering Program (Contributor, Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
165859-Thumbnail Image.png
Description

Cyanidioschyzon merolae, a unicellular extremophilic red algae, is found in hot, acidic groundwater with high concentrations of heavy metals. The association makes it an ideal species to investigate mechanisms of heavy metal tolerance, which may lead to its use in phyco- remediation wherein photosynthetic algae use biological processes to bind

Cyanidioschyzon merolae, a unicellular extremophilic red algae, is found in hot, acidic groundwater with high concentrations of heavy metals. The association makes it an ideal species to investigate mechanisms of heavy metal tolerance, which may lead to its use in phyco- remediation wherein photosynthetic algae use biological processes to bind and remove toxic substances. Two strains of C. merolae, MS1 and 10D, are genetically very similar, despite the latter lacking a cell wall. To investigate heavy metal toxicity and the role of the cell wall, the two strains of C. merolae were exposed to various concentrations of cadmium and cultures were evaluated spectrophotometrically to assess the impact on growth over a 7-day period. The IC50 values of MS1 and 10D were estimated to be 15 and 0.5 ppm CdCl2 respectively, indicating that the cell wall provides protection under the presence of heavy metals. Cadmium uptake was also measured using Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) to investigate metal ion exclusion and acidocalcisome-Cd2+ chelation as potential tolerance mechanisms. ICP-OES data indicated that 10D inoculum pretreated with phosphate depletion and re-supplementation, to induce Cd chelation in acidocalcisomes, then cultured in MA2 had the highest biomass Cd content of all strains and treatments (0.321 ppm; 31.55%). The cell wall clearly promotes survival and resistance to higher concentrations of environmental heavy metals, however, neither MS1 nor 10D seemed to be strains primed for phyco-remediation of heavy metal contamination through cellular uptake and sequestration.

ContributorsIsachsen, Iona (Author) / Lammers, Peter (Thesis director) / Seger, Mark (Committee member) / Lauersen, Kyle (Committee member) / Barrett, The Honors College (Contributor) / School of Life Sciences (Contributor) / School of Sustainability (Contributor)
Created2022-05