Matching Items (113)
Filtering by

Clear all filters

152249-Thumbnail Image.png
Description
For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study

For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation.
ContributorsOliden, Daniel (Author) / Lee, Tae-Woo (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151914-Thumbnail Image.png
Description
Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that

Derived from the necessity to increase testing capabilities of hybrid rocket motor (HRM) propulsion systems for Daedalus Astronautics at Arizona State University, a small-scale motor and test stand were designed and developed to characterize all components of the system. The motor is designed for simple integration and setup, such that both the forward-end enclosure and end cap can be easily removed for rapid integration of components during testing. Each of the components of the motor is removable allowing for a broad range of testing capabilities. While examining injectors and their potential it is thought ideal to obtain the highest regression rates and overall motor performance possible. The oxidizer and fuel are N2O and hydroxyl-terminated polybutadiene (HTPB), respectively, due to previous experience and simplicity. The injector designs, selected for the same reasons, are designed such that they vary only in the swirl angle. This system provides the platform for characterizing the effects of varying said swirl angle on HRM performance.
ContributorsSummers, Matt H (Author) / Lee, Taewoo (Thesis advisor) / Chen, Kangping (Committee member) / Wells, Valana (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151771-Thumbnail Image.png
Description
This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a

This research examines the current challenges of using Lamb wave interrogation methods to localize fatigue crack damage in a complex metallic structural component subjected to unknown temperatures. The goal of this work is to improve damage localization results for a structural component interrogated at an unknown temperature, by developing a probabilistic and reference-free framework for estimating Lamb wave velocities and the damage location. The methodology for damage localization at unknown temperatures includes the following key elements: i) a model that can describe the change in Lamb wave velocities with temperature; ii) the extension of an advanced time-frequency based signal processing technique for enhanced time-of-flight feature extraction from a dispersive signal; iii) the development of a Bayesian damage localization framework incorporating data association and sensor fusion. The technique requires no additional transducers to be installed on a structure, and allows for the estimation of both the temperature and the wave velocity in the component. Additionally, the framework of the algorithm allows it to function completely in an unsupervised manner by probabilistically accounting for all measurement origin uncertainty. The novel algorithm was experimentally validated using an aluminum lug joint with a growing fatigue crack. The lug joint was interrogated using piezoelectric transducers at multiple fatigue crack lengths, and at temperatures between 20°C and 80°C. The results showed that the algorithm could accurately predict the temperature and wave speed of the lug joint. The localization results for the fatigue damage were found to correlate well with the true locations at long crack lengths, but loss of accuracy was observed in localizing small cracks due to time-of-flight measurement errors. To validate the algorithm across a wider range of temperatures the electromechanically coupled LISA/SIM model was used to simulate the effects of temperatures. The numerical results showed that this approach would be capable of experimentally estimating the temperature and velocity in the lug joint for temperatures from -60°C to 150°C. The velocity estimation algorithm was found to significantly increase the accuracy of localization at temperatures above 120°C when error due to incorrect velocity selection begins to outweigh the error due to time-of-flight measurements.
ContributorsHensberry, Kevin (Author) / Chattopadhyay, Aditi (Thesis advisor) / Liu, Yongming (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013
151834-Thumbnail Image.png
Description
Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may

Life cycle assessment (LCA) is a powerful framework for environmental decision making because the broad boundaries called for prevent shifting of burden from one life-cycle phase to another. Numerous experts and policy setting organizations call for the application of LCA to developing nanotechnologies. Early application of LCA to nanotechnology may identify environmentally problematic processes and supply chain components before large investments contribute to technology lock in, and thereby promote integration of environmental concerns into technology development and scale-up (enviro-technical integration). However, application of LCA to nanotechnology is problematic due to limitations in LCA methods (e.g., reliance on data from existing industries at scale, ambiguity regarding proper boundary selection), and because social drivers of technology development and environmental preservation are not identified in LCA. This thesis proposes two methodological advances that augment current capabilities of LCA by incorporating knowledge from technical and social domains. Specifically, this thesis advances the capacity for LCA to yield enviro-technical integration through inclusion of scenario development, thermodynamic modeling, and use-phase performance bounding to overcome the paucity of data describing emerging nanotechnologies. With regard to socio-technical integration, this thesis demonstrates that social values are implicit in LCA, and explores the extent to which these values impact LCA practice and results. There are numerous paths of entry through which social values are contained in LCA, for example functional unit selection, impact category selection, and system boundary definition - decisions which embody particular values and determine LCA results. Explicit identification of how social values are embedded in LCA promotes integration of social and environmental concerns into technology development (socio-enviro-technical integration), and may contribute to the development of socially-responsive and environmentally preferable nanotechnologies. In this way, tailoring LCA to promote socio-enviro-technical integration is a tangible and meaningful step towards responsible innovation processes.
ContributorsWender, Ben A. (Author) / Seager, Thomas P (Thesis advisor) / Crozier, Peter (Committee member) / Fraser, Matthew (Committee member) / Guston, David (Committee member) / Arizona State University (Publisher)
Created2013
151645-Thumbnail Image.png
Description
Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the

Gas turbines have become widely used in the generation of power for cities. They are used all over the world and must operate under a wide variety of ambient conditions. Every turbine has a temperature at which it operates at peak capacity. In order to attain this temperature in the hotter months various cooling methods are used such as refrigeration inlet cooling systems, evaporative methods, and thermal energy storage systems. One of the more widely used is the evaporative systems because it is one of the safest and easiest to utilize method. However, the behavior of water droplets within the inlet to the turbine has not been extensively studied or documented. It is important to understand how the droplets behave within the inlet so that water droplets above a critical diameter will not enter the compressor and cause damage to the compressor blades. In order to do this a FLUENT simulation was constructed in order to determine the behavior of the water droplets and if any droplets remain at the exit of the inlet, along with their size. In order to do this several engineering drawings were obtained from SRP and studies in order to obtain the correct dimensions. Then the simulation was set up using data obtained from SRP and Parker-Hannifin, the maker of the spray nozzles. Then several sets of simulations were run in order to see how the water droplets behaved under various conditions. These results were then analyzed and quantified so that they could be easily understood. The results showed that the possible damage to the compressor increased with increasing temperature at a constant relative humidity. This is due in part to the fact that in order to keep a constant relative humidity at varying temperatures the mass fraction of water vapor in the air must be changed. As temperature increases the water vapor mass fraction must increase in order to maintain a constant relative humidity. This in turn makes it slightly increases the evaporation time of the water droplets. This will then lead to more droplets exiting the inlet and at larger diameters.
ContributorsHargrave, Kevin (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kaangping (Committee member) / Arizona State University (Publisher)
Created2013
151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
152266-Thumbnail Image.png
Description
In the industry of manufacturing, each gas turbine engine component begins in a raw state such as bar stock and is routed through manufacturing processes to define its final form before being installed on the engine. What is the follow-up to this part? What happens when over time and usage

In the industry of manufacturing, each gas turbine engine component begins in a raw state such as bar stock and is routed through manufacturing processes to define its final form before being installed on the engine. What is the follow-up to this part? What happens when over time and usage it wears? Several factors have created a section of the manufacturing industry known as aftermarket to support the customer in their need for restoration and repair of their original product. Once a product has reached a wear factor or cycle limit that cannot be ignored, one of the options is to have it repaired to maintain use of the core. This research investigated the study into the creation and application of repair development methodology that can be utilized by current and new manufacturing engineers of the world. Those who have been in this field for some time will find the process thought provoking while the engineering students can develop a foundation of thinking to prepare for the common engineering problems they will be tasked to resolve. The examples, figures and tables are true issues of the industry though the data will have been changed due to proprietary factors. The results of the study reveals, under most scenarios, a solid process can be followed to proceed with the best options for repair based on the initial discrepancy. However, this methodology will not be a "catch-all" process but a guidance that will develop the proper thinking in evaluation of the repair options and the possible failure modes of each choice. As with any continuous improvement tool, further research is needed to test the applicability of this process in other fields.
ContributorsMoedano, Jesus A (Author) / Lewis, Sharon L (Thesis advisor) / Meitz, Robert (Committee member) / Georgeou, Trian (Committee member) / Arizona State University (Publisher)
Created2013
152328-Thumbnail Image.png
Description
Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the

Novel materials for Li-ion batteries is one of the principle thrust areas for current research in energy storage, more so than most, considering its widespread use in portable electronic gadgets and plug-in electric and hybrid cars. One of the major limiting factors in a Li-ion battery's energy density is the low specific capacities of the active materials in the electrodes. In the search for high-performance anode materials for Li-ion batteries, many alternatives to carbonaceous materials have been studied. Both cubic and amorphous silicon can reversibly alloy with lithium and have a theoretical capacity of 3500 mAh/g, making silicon a potential high density anode material. However, a large volume expansion of 300% occurs due to changes in the structure during lithium insertion, often leading to pulverization of the silicon. To this end, a class of silicon based cage compounds called clathrates are studied for electrochemical reactivity with lithium. Silicon-clathrates consist of silicon covalently bonded in cage structures comprised of face sharing Si20, Si24 and/or Si28 clusters with guest ions occupying the interstitial positions in the polyhedra. Prior to this, silicon clathrates have been studied primarily for their superconducting and thermoelectric properties. In this work, the synthesis and electrochemical characterization of two categories of silicon clathrates - Type-I silicon clathrate with aluminum framework substitution and barium guest ions (Ba8AlxSi46-x) and Type-II silicon clathrate with sodium guest ions (Nax Si136), are explored. The Type-I clathrate, Ba8AlxSi46-x consists of an open framework of aluminium and silicon, with barium (guest) atoms occupying the interstitial positions. X-ray diffraction studies have shown that a crystalline phase of clathrate is obtained from synthesis, which is powdered to a fine particle size to be used as the anode material in a Li-ion battery. Electrochemical measurements of these type of clathrates have shown that capacities comparable to graphite can be obtained for up to 10 cycles and lower capacities can be obtained for up to 20 cycles. Unlike bulk silicon, the clathrate structure does not undergo excessive volume change upon lithium intercalation, and therefore, the crystal structure is morphologically stable over many cycles. X-ray diffraction of the clathrate after cycling showed that crystallinity is intact, indicating that the clathrate does not collapse during reversible intercalation with lithium ions. Electrochemical potential spectroscopy obtained from the cycling data showed that there is an absence of formation of lithium-silicide, which is the product of lithium alloying with diamond cubic silicon. Type II silicon clathrate, NaxSi136, consists of silicon making up the framework structure and sodium (guest) atoms occupying the interstitial spaces. These clathrates showed very high capacities during their first intercalation cycle, in the range of 3,500 mAh/g, but then deteriorated during subsequent cycles. X-ray diffraction after one cycle showed the absence of clathrate phase and the presence of lithium-silicide, indicating the disintegration of clathrate structure. This could explain the silicon-like cycling behavior of Type II clathrates.
ContributorsRaghavan, Rahul (Author) / Chan, Candace K. (Thesis advisor) / Crozier, Peter (Committee member) / Petuskey, William T (Committee member) / Arizona State University (Publisher)
Created2013
152732-Thumbnail Image.png
Description
The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in

The presented work in this report is about Real time Estimation of wind and analyzing current wind correction algorithm in commercial off the shelf Autopilot board. The open source ArduPilot Mega 2.5 (APM 2.5) board manufactured by 3D Robotics is used. Currently there is lot of development being done in the field of Unmanned Aerial Systems (UAVs), various aerial platforms and corresponding; autonomous systems for them. This technology has advanced to such a stage that UAVs can be used for specific designed missions and deployed with reliability. But in some areas like missions requiring high maneuverability with greater efficiency is still under research area. This would help in increasing reliability and augmenting range of UAVs significantly. One of the problems addressed through this thesis work is, current autopilot systems have algorithm that handles wind by attitude correction with appropriate Crab angle. But the real time wind vector (direction) and its calculated velocity is based on geometrical and algebraic transformation between ground speed and air speed vectors. This method of wind estimation and prediction, many a times leads to inaccuracy in attitude correction. The same has been proved in the following report with simulation and actual field testing. In later part, new ways to tackle while flying windy conditions have been proposed.
ContributorsBiradar, Anandrao Shesherao (Author) / Saripalli, Srikanth (Thesis advisor) / Berman, Spring (Thesis advisor) / Thanga, Jekan (Committee member) / Arizona State University (Publisher)
Created2014