Matching Items (8)
Filtering by

Clear all filters

152016-Thumbnail Image.png
Description
Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change.

Energy is a central concern of sustainability because how we produce and consume energy affects society, economy, and the environment. Sustainability scientists are interested in energy transitions away from fossil fuels because they are nonrenewable, increasingly expensive, have adverse health effects, and may be the main driver of climate change. They see an opportunity for developing countries to avoid the negative consequences fossil-fuel-based energy systems, and also to increase resilience, by leap-frogging-over the centralized energy grid systems that dominate the developed world. Energy transitions pose both challenges and opportunities. Obstacles to transitions include 1) an existing, centralized, complex energy-grid system, whose function is invisible to most users, 2) coordination and collective-action problems that are path dependent, and 3) difficulty in scaling up RE technologies. Because energy transitions rely on technological and social innovations, I am interested in how institutional factors can be leveraged to surmount these obstacles. The overarching question that underlies my research is: What constellation of institutional, biophysical, and social factors are essential for an energy transition? My objective is to derive a set of "design principles," that I term institutional drivers, for energy transitions analogous to Ostrom's institutional design principles. My dissertation research will analyze energy transitions using two approaches: applying the Institutional Analysis and Development Framework and a comparative case study analysis comprised of both primary and secondary sources. This dissertation includes: 1) an analysis of the world's energy portfolio; 2) a case study analysis of five countries; 3) a description of the institutional factors likely to promote a transition to renewable-energy use; and 4) an in-depth case study of Thailand's progress in replacing nonrenewable energy sources with renewable energy sources. My research will contribute to our understanding of how energy transitions at different scales can be accomplished in developing countries and what it takes for innovation to spread in a society.
ContributorsKoster, Auriane Magdalena (Author) / Anderies, John M (Thesis advisor) / Aggarwal, Rimjhim (Committee member) / Van Der Leeuw, Sander (Committee member) / Arizona State University (Publisher)
Created2013
153529-Thumbnail Image.png
Description
This dissertation examines the nexus of three trends in electricity systems transformations underway worldwide—the scale-up of renewable energy, regionalization, and liberalization. Interdependent electricity systems are being envisioned that require partnership and integration across power disparities. This research explores how actors in the Mediterranean region envisioned a massive scale-up of renewable

This dissertation examines the nexus of three trends in electricity systems transformations underway worldwide—the scale-up of renewable energy, regionalization, and liberalization. Interdependent electricity systems are being envisioned that require partnership and integration across power disparities. This research explores how actors in the Mediterranean region envisioned a massive scale-up of renewable energy within a single electricity system and market across Europe, North Africa, and the Middle East. It asks: How are regional sociotechnical systems envisioned? What are the anticipated consequences of a system for a region with broad disparities and deep sociopolitical differences? What can be learned about energy justice by examining this vision at multiple scales? A sociotechnical systems framework is used to analyze energy transformations, interweaving the technical aspects with politics, societal effects, and political development issues. This research utilized mixed qualitative methods to analyze Mediterranean electricity transformations at multiple scales, including fieldwork in Morocco and Germany, document analysis, and event ethnography. Each scale—from a global history of concentrating solar power technologies to a small village in Morocco—provides a different lens on the sociotechnical system and its implications for justice. This study updates Thomas Hughes’ Networks of Power, the canonical history of the sociotechnical development of electricity systems, by adding new aspects to sociotechnical electricity systems theory. First, a visioning process now plays a crucial role in guiding innovation and has a lasting influence on the justice outcomes. Second, rather than simply providing people with heat and light, electrical power systems in the 21st century are called upon to address complex integrated solutions. Furthermore, building a sustainable energy system is now a retrofitting agenda, as system builders must graft new infrastructure on top of old systems. Third, the spatial and temporal aspects of sociotechnical energy systems should be amended to account for constructed geography and temporal complexity. Fourth, transnational electricity systems pose new challenges for politics and political development. Finally, this dissertation presents a normative framework for conceptualizing and evaluating energy justice. Multi-scalar, systems-level justice requires collating diverse ideas about energy justice, expanding upon them based on the empirical material, and evaluating them with this framework.
ContributorsMoore, Sharlissa (Author) / Hackett, Ed J. (Thesis advisor) / Minteer, Ben (Committee member) / Parmentier, Mary Jane (Committee member) / Wetmore, Jameson (Committee member) / Arizona State University (Publisher)
Created2015
157354-Thumbnail Image.png
Description
The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by

The residential building sector accounts for more than 26% of the global energy consumption and 17% of global CO2 emissions. Due to the low cost of electricity in Kuwait and increase of population, Kuwaiti electricity consumption tripled during the past 30 years and is expected to increase by 20% by 2027. In this dissertation, a framework is developed to assess energy savings techniques to help policy-makers make educated decisions. The Kuwait residential energy outlook is studied by modeling the baseline energy consumption and the diffusion of energy conservation measures (ECMs) to identify the impacts on household energy consumption and CO2 emissions.



The energy resources and power generation in Kuwait were studied. The characteristics of the residential buildings along with energy codes of practice were investigated and four building archetypes were developed. Moreover, a baseline of end-use electricity consumption and demand was developed. Furthermore, the baseline energy consumption and demand were projected till 2040. It was found that by 2040, energy consumption would double with most of the usage being from AC. While with lighting, there is a negligible increase in consumption due to a projected shift towards more efficient lighting. Peak demand loads are expected to increase by an average growth rate of 2.9% per year. Moreover, the diffusion of different ECMs in the residential sector was modeled through four diffusion scenarios to estimate ECM adoption rates. ECMs’ impact on CO2 emissions and energy consumption of residential buildings in Kuwait was evaluated and the cost of conserved energy (CCE) and annual energy savings for each measure was calculated. AC ECMs exhibited the highest cumulative savings, whereas lighting ECMs showed an immediate energy impact. None of the ECMs in the study were cost effective due to the high subsidy rate (95%), therefore, the impact of ECMs at different subsidy and rebate rates was studied. At 75% subsidized utility price and 40% rebate only on appliances, most of ECMs will be cost effective with high energy savings. Moreover, by imposing charges of $35/ton of CO2, most ECMs will be cost effective.
ContributorsAlajmi, Turki (Author) / Phelan, Patrick E (Thesis advisor) / Kaloush, Kamil (Committee member) / Huang, Huei-Ping (Committee member) / Wang, Liping (Committee member) / Hajiah, Ali (Committee member) / Arizona State University (Publisher)
Created2019
152079-Thumbnail Image.png
Description
Many different levels of government, organizations, and programs actively shape the future of energy in Arizona, a state that lacks a comprehensive energy plan. Disparate actions by multiple actors may slow the energy policy process rather than expedite it. The absence of a state energy policy or plan raises questions

Many different levels of government, organizations, and programs actively shape the future of energy in Arizona, a state that lacks a comprehensive energy plan. Disparate actions by multiple actors may slow the energy policy process rather than expedite it. The absence of a state energy policy or plan raises questions about how multiple actors and ideas engage with state energy policy development and whether the absence of a comprehensive state plan can be understood. Improving how policy development is conceptualized and giving more focused attention to the mechanisms by which interested parties become involved in shaping Arizona energy policy. To explore these questions, I examine the future energy efficiency. Initially, public engagement mechanisms were examined for their role in policy creation from a theoretical perspective. Next a prominent public engagement forum that was dedicated to the topic of the Arizona's energy future was examined, mapping its process and conclusions onto a policy process model. The first part of this thesis involves an experimental expert consultation panel which was convened to amplify and refine the results of a public forum. The second part utilizes an online follow up survey to complete unfinished ideas from the focus group. The experiment flowed from a hypothesis that formal expert discussion on energy efficiency policies, guided by the recommendations put forth by the public engagement forum on energy in Arizona, would result in an increase in relevance while providing a forum for interdisciplinary collaboration that is atypical in today's energy discussions. This experiment was designed and evaluated utilizing a public engagement framework that incorporated theoretical and empirical elements. Specifically, I adapted elements of three methods of public and expert engagement used in policy development to create a consultation process that was contextualized to energy efficiency stakeholders in Arizona and their unique constraints. The goal of the consultation process was to refine preferences about policy options by expert stakeholders into actionable goals that could achieve advancement on policy implementation. As a corollary goal, the research set out to define implementation barriers, refine policy ideas, and operationalize Arizona-centric goals for the future of energy efficiency.
ContributorsBryck, Drew (Author) / Graffy, Elisabeth A. (Thesis advisor) / Dalrymple, Michael (Committee member) / Miller, Clark (Committee member) / Arizona State University (Publisher)
Created2013
171625-Thumbnail Image.png
Description
The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are

The Water-Energy Nexus (WEN) is a concept that recognizes the interdependence of water and energy systems. The Phoenix metropolitan region (PMA) in Arizona has significant and potentially vulnerable WEN interactions. Future projections indicate that the population will increase and, with it, energy needs, while changes in future water demand are more uncertain. Climate change will also likely cause a reduction in surface water supply sources. Under these constraints, the expansion of renewable energy technology has the potential to benefit both water and energy systems and increase environmental sustainability by meeting future energy demands while lowering water use and CO2 emissions. However, the WEN synergies generated by renewables have not yet been thoroughly quantified, nor have the related costs been studied and compared to alternative options.Quantifying WEN intercations using numerical models is key to assessing renewable energy synergy. Despite recent advances, WEN models are still in their infancy, and research is needed to improve their accuracy and identify their limitations. Here, I highlight three research needs. First, most modeling efforts have been conducted for large-scale domains (e.g., states), while smaller scales, like metropolitan regions, have received less attention. Second, impacts of adopting different temporal (e.g., monthly, annual) and spatial (network granularity) resolutions on simulation accuracy have not been quantified. Third, the importance of simulating feedbacks between water and energy components has not been analyzed. This dissertation fills these major research gaps by focusing on long-term water allocations and energy dispatch in the metropolitan region of Phoenix. An energy model is developed using the Low Emissions Analysis Platform (LEAP) platform and is subsequently coupled with a water management model based on the Water Evaluation and Planning (WEAP) platform. Analyses are conducted to quantify (1) the value of adopting coupled models instead of single models that are externally coupled, and (2) the accuracy of simulations based on different temporal resolutions of supply and demand and spatial granularity of the water and energy networks. The WEAP-LEAP integrated model is then employed under future climate scenarios to quantify the potential of renewable energy technologies to develop synergies between the PMA's water and energy systems.
ContributorsMounir, Adil (Author) / Mascaro, Giuseppe (Thesis advisor) / White, Dave (Committee member) / Garcia, Margaret (Committee member) / Xu, Tianfang (Committee member) / Chester, Mikhail (Committee member) / Arizona State University (Publisher)
Created2022
171557-Thumbnail Image.png
Description
This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors

This dissertation consists of three chapters that investigate the rapid adoption and complex implementation of city commitments to transition to 100% renewable energy (100RE). The first paper uses a two-stage, mixed methods approach to examine 100RE commitments across the US, combining a multivariate regression of demographic, institutional, and policy factors in adoption and six interview-based state case studies to discuss implementation. Adoption of this non-binding commitment progressed rapidly for city councils around the US. Results show that many cities passed 100RE commitments with no implementation plan and minimal understanding of implementation challenges. This analysis highlights that many cities will need new institutions and administrative capacities for successful implementation of these ambitious new policies. While many cities abandoned the commitment soon after adoption, collaboration allowed cities in a few states to break through and pursue implementation, examined further in the next two studies. The second paper is a qualitative case study examining policymaking for the Utah Community Renewable Energy Act. Process tracing methods are used to identify causal factors in enacting this legislation at the state level and complementary resolutions at the local level. This Act was passed through the leadership and financial backing of major cities and committed the investor-owned utility to fulfill any city 100RE resolutions passed through 2019. Finally, the third paper is a mixed-methods, descriptive case study of the benefits of Community Choice Aggregation (CCA) in California, which many cities are using to fulfill their 100RE commitments. Cities have adopted CCAs to increase their local voice in the energy process, while fulfilling climate and energy goals. Overall, this research shows that change in the investor-owned utility electricity system is in fact possible from the city scale, though many cities will need institutional innovation to implement these policies and achieve the change they desire. While cities with greater resources are better positioned to make an impact, smaller cities can collaborate to similarly influence the energy system. Communities are interested in lowering energy costs for customers where possible, but the central motivations in these cases were the pursuit of sustainability and increasing local voice in energy decision-making.
ContributorsKunkel, Leah Christine (Author) / Breetz, Hanna L (Thesis advisor) / Parker, Nathan (Committee member) / Salon, Deborah (Committee member) / Arizona State University (Publisher)
Created2022
154245-Thumbnail Image.png
Description
Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch

Energy poverty is pervasive in sub-Saharan Africa. Nigeria, located in sub-Saharan West Africa, is the world's seventh largest oil exporting country and is a resource-rich nation. It however experiences the same levels of energy poverty as most of its neighboring countries. Attributing this paradox only to corruption or the "Dutch Disease", where one sector booms at the expense of other sectors of the economy, is simplistic and enervates attempts at reform. In addition, data on energy consumption is aggregated at the national level via estimates, disaggregated data is virtually non-existent. Finally, the wave of decentralization of vertically integrated national utilities sweeping the developing world has caught on in sub-Saharan Africa. However, little is known of the economic and social implications of these transitions within the unique socio-technical system of the region's electricity sector, especially as it applies to energy poverty. This dissertation proposes a complex systems approach to measuring and mitigating energy poverty in Nigeria due to its multi-dimensional nature. This is done via a three-fold approach: the first section of the study delves into causation by examining the governance institutions that create and perpetuate energy poverty; the next section proposes a context-specific minimum energy poverty line based on field data collected on energy consumption; and the paper concludes with an indicator-based transition management framework encompassing institutional, economic, social, and environmental themes of sustainable transition within the electricity sector. This work contributes to intellectual discourse on systems-based mitigation strategies for energy poverty that are widely applicable within the sub-Saharan region, as well as adds to the knowledge-base of decision-support tools for addressing energy poverty in its complexity.
ContributorsChidebell Emordi, Chukwunonso (Author) / York, Abigail (Thesis advisor) / Pasqualetti, Martin (Committee member) / Golub, Aaron (Committee member) / Arizona State University (Publisher)
Created2015
157656-Thumbnail Image.png
Description
To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience

To improve the resilience of complex, interdependent infrastructures, we need to better understand the institutions that manage infrastructures and the work that they do. This research demonstrates that a key aspect of infrastructure resilience is the adequate institutional management of infrastructures. This research analyzes the institutional dimension of infrastructure resilience using sociotechnical systems theory and, further, investigates the critical role of institutions for infrastructure resilience using a thorough analysis of water and energy systems in Arizona.

Infrastructure is not static, but dynamic. Institutions play a significant role in designing, building, maintaining, and upgrading dynamic infrastructures. Institutions create the appearance of infrastructure stability while dynamically changing infrastructures over time, which is resilience work. The resilience work of different institutions and organizations sustains, recovers, adapts, reconfigures, and transforms the physical structure on short, medium, and long temporal scales.

To better understand and analyze the dynamics of sociotechnical infrastructure resilience, this research examines several case studies. The first is the social and institutional arrangements for the allocation of resources from Hoover Dam. This research uses an institutional analysis framework and draws on the institutional landscape of water and energy systems in Arizona. In particular, this research illustrates how institutions contribute to differing resilience work at temporal scales while fabricating three types of institutional threads: lateral, vertical, and longitudinal threads.

This research also highlights the importance of institutional interdependence as a critical challenge for improving infrastructure resilience. Institutional changes in one system can disrupt other systems’ performance. The research examines this through case studies that explore how changes to water governance impact the energy system in Arizona. Groundwater regulations affect the operation of thermoelectric power plants which withdraw groundwater for cooling. Generation turbines, droughts, and water governance are all intertwined via institutions in Arizona.

This research, finally, expands and applies the interdependence perspective to a case study of forest management in Arizona. In a nutshell, the perilous combination of chronic droughts and the engineering resilience perspective jeopardizes urban water and energy systems. Wildfires caused by dense forests have legitimized an institutional transition, from thickening forests to thinning trees in Arizona.
ContributorsGim, Changdeok (Author) / Miller, Clark A. (Thesis advisor) / Maynard, Andrew D. (Committee member) / Hirt, Paul W. (Committee member) / Arizona State University (Publisher)
Created2019