Matching Items (19)
Filtering by

Clear all filters

148108-Thumbnail Image.png
Description

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile

This 15-week long course is designed to introduce students, specifically in Arizona, to basic sustainability and conservation principles in the context of local reptile wildlife. Throughout the course, the students work on identifying the problem, creating visions for the desired future, and finally developing a strategy to help with reptile species survival in the valley. Research shows that animals in the classroom have led to improved academic success for students. Thus, through creating this course I was able to combine conservation and sustainability curriculum with real-life animals whose survival is directly being affected in the valley. My hope is that this course will help students identify a newfound passion and call to action to protect native wildlife. The more awareness and actionable knowledge which can be brought to students in Arizona about challenges to species survival the more likely we are to see a change in the future and a stronger sense of urgency for protecting wildlife. In order to accomplish these goals, the curriculum was developed to begin with basic concepts of species needs such as food and shelter and basic principles of sustainability. As the course progresses the students analyze current challenges reptile wildlife faces, like urban sprawl, and explore options to address these challenges. The course concludes with a pilot pitch where students present their solution projects to the school.

ContributorsGoethe, Emma Rae (Author) / Brundiers, Katja (Thesis director) / Bouges, Olivia (Committee member) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
152110-Thumbnail Image.png
Description
In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used.

In a laboratory setting, the soil volume change behavior is best represented by using various testing standards on undisturbed or remolded samples. Whenever possible, it is most precise to use undisturbed samples to assess the volume change behavior but in the absence of undisturbed specimens, remodeled samples can be used. If that is the case, the soil is compacted to in-situ density and water content (or matric suction), which should best represent the expansive profile in question. It is standard practice to subject the specimen to a wetting process at a particular net normal stress. Even though currently accepted laboratory testing standard procedures provide insight on how the profile conditions changes with time, these procedures do not assess the long term effects on the soil due to climatic changes. In this experimental study, an assessment and quantification of the effect of multiple wetting/drying cycles on the volume change behavior of two different naturally occurring soils was performed. The changes in wetting and drying cycles were extreme when comparing the swings in matric suction. During the drying cycle, the expansive soil was subjected to extreme conditions, which decreased the moisture content less than the shrinkage limit. Nevertheless, both soils were remolded at five different compacted conditions and loaded to five different net normal stresses. Each sample was subjected to six wetting and drying cycles. During the assessment, it was evident from the results that the swell/collapse strain is highly non-linear at low stress levels. The strain-net normal stress relationship cannot be defined by one single function without transforming the data. Therefore, the dataset needs to be fitted to a bi-modal logarithmic function or to a logarithmic transformation of net normal stress in order to use a third order polynomial fit. It was also determined that the moisture content changes with time are best fit by non-linear functions. For the drying cycle, the radial strain was determined to have a constant rate of change with respect to the axial strain. However, for the wetting cycle, there was not enough radial strain data to develop correlations and therefore, an assumption was made based on 55 different test measurements/observations, for the wetting cycles. In general, it was observed that after each subsequent cycle, higher swelling was exhibited for lower net normal stress values; while higher collapse potential was observed for higher net normal stress values, once the net normal stress was less than/greater than a threshold net normal stress value. Furthermore, the swelling pressure underwent a reduction in all cases. Particularly, the Anthem soil exhibited a reduction in swelling pressure by at least 20 percent after the first wetting/drying cycle; while Colorado soil exhibited a reduction of 50 percent. After about the fourth cycle, the swelling pressure seemed to stabilized to an equilibrium value at which a reduction of 46 percent was observed for the Anthem soil and 68 percent reduction for the Colorado soil. The impact of the initial compacted conditions on heave characteristics was studied. Results indicated that materials compacted at higher densities exhibited greater swell potential. When comparing specimens compacted at the same density but at different moisture content (matric suction), it was observed that specimens compacted at higher suction would exhibit higher swelling potential, when subjected to the same net normal stress. The least amount of swelling strain was observed on specimens compacted at the lowest dry density and the lowest matric suction (higher water content). The results from the laboratory testing were used to develop ultimate heave profiles for both soils. This analysis showed that even though the swell pressure for each soil decreased with cycles, the amount of heave would increase or decrease depending upon the initial compaction condition. When the specimen was compacted at 110% of optimum moisture content and 90% of maximum dry density, it resulted in an ultimate heave reduction of 92 percent for Anthem and 685 percent for Colorado soil. On the other hand, when the soils were compacted at 90% optimum moisture content and 100% of the maximum dry density, Anthem specimens heave 78% more and Colorado specimens heave was reduced by 69%. Based on the results obtained, it is evident that the current methods to estimate heave and swelling pressure do not consider the effect of wetting/drying cycles; and seem to fail capturing the free swell potential of the soil. Recommendations for improvement current methods of practice are provided.
ContributorsRosenbalm, Daniel Curtis (Author) / Zapata, Claudia E (Thesis advisor) / Houston, Sandra L. (Committee member) / Kavazanjian, Edward (Committee member) / Witczak, Mathew W (Committee member) / Arizona State University (Publisher)
Created2013
135563-Thumbnail Image.png
Description
This dissertation details an attempt to experimentally evaluate the Giroud et al. (1995) concentration factors for geomembranes loaded in tension perpendicular to a seam by laboratory measurement. Field observations of the performance of geomembrane liner systems indicates that tears occur at average strains well below the yield criteria. These observations

This dissertation details an attempt to experimentally evaluate the Giroud et al. (1995) concentration factors for geomembranes loaded in tension perpendicular to a seam by laboratory measurement. Field observations of the performance of geomembrane liner systems indicates that tears occur at average strains well below the yield criteria. These observations have been attributed, in part, to localized strain concentrations in the geomembrane loaded in tension in a direction perpendicular to the seam. Giroud et al. (1995) has presented theoretical strain concentration factors for geomembrane seams loaded in tension when the seam is perpendicular to the applied tensile strain. However, these factors have never been verified. This dissertation was prepared in fulfillment of the requirements for graduation from Barrett, the Honors College at Arizona State University. The work described herein was sponsored by the National Science Foundation as a part of a larger research project entitled "NEESR: Performance Based Design of Geomembrane Liner Systems Subject to Extreme Loading." The work is motivated by geomembrane tears observed at the Chiquita Canyon landfill following the 1994 Northridge earthquake. Numerical analysis of the strains in the Chiquita Canyon landfill liner induced by the earthquake indicated that the tensile strains, were well below the yield strain of the geomembrane material. In order to explain why the membrane did fail, strain concentration factors due to bending at seams perpendicular to the load in the model proposed by Giroud et al. (1995) had to be applied to the geomembrane (Arab, 2011). Due to the localized nature of seam strain concentrations, digital image correlation (DIC) was used. The high resolution attained with DIC had a sufficient resolution to capture the localized strain concentrations. High density polyethylene (HDPE) geomembrane samples prepared by a leading geomembrane manufacturer were used in the testing described herein. The samples included both extrusion fillet and dual hot wedge fusion seams. The samples were loaded in tension in a standard triaxial test apparatus. to the seams in the samples including both extrusion fillet and dual hot wedge seams. DIC was used to capture the deformation field and strain fields were subsequently created by computer analysis.
ContributorsAndresen, Jake Austin (Author) / Kavazanjian, Edward (Thesis director) / Gutierrez, Angel (Committee member) / Civil, Environmental and Sustainable Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
137468-Thumbnail Image.png
Description
This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting

This thesis examines how the wording of proposed government policies can affect the level of public support that a given policy generates. By surveying 158 Phoenix residents, I tested the differing degrees of support that voters would have for a proposed city ordinance, which would stop Homeowners' Associations from restricting the use of native desert plants in residential landscaping. The ordinance was framed in the survey as a self-governance issue or a water conservation issue. I found that the message frames had little effect on the overall level of support for the ordinance, since most residents had moderate support for the policy. However, participants who were either residents of Homeowners' Associations that did not have native plant restrictions, or native residents of Arizona, demonstrated greater levels of support for the self-determination frame of the proposed ordinance. These findings have implications for policy makers who use targeted messages to establish pro-environmental policies at the local level.
ContributorsSmith, Mary Hannah (Author) / Darnall, Nicole (Thesis director) / Ramirez, Mark (Committee member) / Tetreault, Colin (Committee member) / Barrett, The Honors College (Contributor) / School of Sustainability (Contributor) / School of Politics and Global Studies (Contributor)
Created2013-05
131271-Thumbnail Image.png
Description
Climate change, as it becomes more prevalent, is putting a much harsher strain on the resources of the world, specifically food, energy, and water. With this in mind, now is the time to make a change and begin working towards a more sustainable future for everyone. Arizona is an especially

Climate change, as it becomes more prevalent, is putting a much harsher strain on the resources of the world, specifically food, energy, and water. With this in mind, now is the time to make a change and begin working towards a more sustainable future for everyone. Arizona is an especially susceptible location that has the opportunity to be the leader of this change. In order to effectively manage this movement through governance, a food-energy-water nexus approach is required. This approach recognizes and accounts for the intricate relationships between these industries in order to promote more resilience and balance throughout the nexus. While the main focus in Arizona tends to be on water, and rightfully so, it is important to understand the intricacies of the food, energy, and water systems together. Right now, the system is fragile and needs a new, more complex approach. Ultimately, legislation that intertwines water rights with agriculture regulation and energy production goals, while also including equity and justice measures, have the capacity to work towards limiting the effects of climate change that Arizona will see. Arizona has the opportunity here to either provide a cautionary tale to other regions of how mismanagement can lead to destruction or can showcase the legislative success that the nexus governance approach can provide.
ContributorsKonopka, Violet (Author) / York, Abigail (Thesis director) / Richter, Jennifer (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / School of Politics and Global Studies (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132642-Thumbnail Image.png
Description
Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations,

Two large sectors of water consumption within cities are: city owned irrigated landscape (such as parks) and household consumption. A related, third sector of consumption that has very little research behind it is shared landscapes in residential communities. Neighborhood communities, including those with formal Homeowner’s Associations and informal Neighborhood Associations, have common landscapes they are responsible for up-keeping and irrigating. 208 neighborhood communities exist within the City of Tempe. Each year the city provides $30,000 in grant funding to these 208 neighborhoods to implement water conservation projects. This thesis focuses on ten neighborhoods who had applied and were granted funding to implement a conservation project between the years 2011 and 2016. My findings showed that this program has not been effective in reducing water consumption, wither due to the lack of implementation or the small-scale of the projects. From my research and synthesis, I suggest a layer of accountability be added to the program to ensure projects are effective and participants are implementing their projects and that the program is effective overall. This study provides the City of Tempe with relevant and viable information to aid management of water consumption and conservation within neighborhoods.
ContributorsApillanes, Sierra Caitlyn (Author) / Larson, Kelli (Thesis director) / Bomar, Melissa (Committee member) / School of Sustainability (Contributor, Contributor) / School of Earth and Space Exploration (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132700-Thumbnail Image.png
Description
Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act

Drilling in Section 1002 has been an ongoing debate since the region was designated as a potential area for drilling projects, pending congressional approval in 1980. In 2017, the area was officially opened up for oil and gas development through its passage in the GOP Tax Cuts and Jobs Act of 2017. This act requires 2 lease sales of 400,000 acres, with an allowed 2,000 acre physical footprint (not including pipelines, ice roads, or gravel mines). Using Social-Life Cycle Assessment methodology to assess the process of oil extraction in Section 1002, significant benefits and drawbacks of drilling in this region, with economic, cultural, and social impacts ranging from the local level to the state level to the national level were identified.

Stakeholders impacted by oil development in the Section 1002 region include the Kaktovik community who lives within the Program Area, the Gwich’in people who live south of ANWR, the corporations who will be leasing the land, as well as the employees who will be working on the projects. These stakeholders share similar values and interests, however, when it comes down to the attainment of these values, there are significant differences in opinion. This debate comes down specifically to the desire to ensure stability for one’s family and community, as this means 2 different things to the majority stakeholders on this issue: The Inupiaq and the Gwich’in. The Inupiaq ,who live in Kaktovik specifically ,are particularly keen on the idea of drilling in the Section 1002 region, because the revenues and opportunities that come with the oil and gas development provide access to better standards of living and a more westernized way of life. The Gwich’in, however, value their relationship to the land and the caribou that are at risk of significant change. These 2 groups are critical to the debate, but the state and federal governments have the final say, and a financial incentive to move forward with the lease sales.

Utilizing the S-LCA framework, life cycle impacts of drilling on society are found using indicators that are identified and assessed using both qualitative and quantitative means. Although some conclusions are uncertain due to the forward-looking nature of this S-LCA, the Increasing/Decreasing trends can be identified and confidently attributed to the specific indicators.

Significant Results:
Significant issues this study has highlighted include the resulting impacts, both positive and negative, on the communities affected by oil and gas development in Section 1002. Significant stakeholders include the Kaktovik community, the Gwich’in people, the oil and gas workers in the state of Alaska, and the oil and gas companies themselves. The local residents are the most affected by the impacts of development, with significant issues pertaining to potential for significant lifestyle change, the increased risk of impact on subsistence species, the risks associated with pollution, and the effect on the economy through revenues and job availability.
ContributorsJunglas, Hillary L (Author) / Pasqualetti, Martin (Thesis director) / Breetz, Hanna (Committee member) / Department of Supply Chain Management (Contributor) / School of Sustainability (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
133109-Thumbnail Image.png
Description
Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main

Expansive soils in the United States cause extensive damage to roadways, buildings, and various structures. There are several treatment or methods of mitigation for these expansive soils. These treatments can be physical or chemical treatments that serve to provide more suitable building qualities for foundations and roadways alike. The main issue with expansive soils, is the volumetric variations, which are known as swelling and consolidation. These behaviors of the soil are usually stabilized through the use of lime solution, Portland Cement Concrete, and a newer technology in chemical treatments, sodium silicate solutions. Although the various chemical treatments show benefits in certain areas, the most beneficial method for stabilization comes from the combination of the chemical treatments. Lime and Portland cement concrete are the most effective in terms of increasing compressive strength and reduction of swell potential. However, with the introduction of silicate into either treatment, the efficacy of the treatments increases by a large amount lending itself more as an additive for the former processes. Sodium silicate solution does not lend itself to effectively increase the compressive strength of expansive soils. The sodium silicate solution treatment needs extensive research and development to further improve the process. A proposed experiment plan has been recommended to develop trends of pH and temperature and its influence on the effectiveness of the treatment. Nonetheless, due to the high energy consumption of the other processes, sodium silicate solution may be a proper step in decreases the carbon footprint, that is currently being created by the synthesis of Portland Cement Concrete and lime.
ContributorsMeza, Magdaleno (Author) / Zapata, Claudia (Thesis director) / Kavazanjian, Edward (Committee member) / Civil, Environmental and Sustainable Eng Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2018-12
132078-Thumbnail Image.png
Description
Human activities around the world are threatening scores of wildlife species, pushing them closer to extinction. In order to address what many conservationists view as a global biodiversity crisis, it is vital that more people are inspired to care about wild animals and motivated to act in ways that hel

Human activities around the world are threatening scores of wildlife species, pushing them closer to extinction. In order to address what many conservationists view as a global biodiversity crisis, it is vital that more people are inspired to care about wild animals and motivated to act in ways that help protect them. The up-close experiences and personal connections that people form with wild animals in zoos accredited by the Association of Zoos and Aquariums (AZA) or the World Association of Zoos and Aquariums (WAZA) can help achieve this. However, it is not very well understood how different types of encounters within these zoos may inspire conservation mindedness and pro-environmental behaviors. During this thesis project, surveys were conducted at the AZA-accredited Arizona Center for Nature Conservation/Phoenix Zoo to understand how interactive, hands-on animal experiences within zoos differ from passively viewing zoo animals when it comes to inspiring people to care about conservation. The Phoenix Zoo is home to two different species of giraffes, and guests can view them from the front of the Savanna Exhibit. Guests can also participate in the Giraffe Encounter, which is a much more interactive, hands-on experience. After surveying guests at both locations, the results showed that fewer people at the Giraffe Encounter responded that they often engage in pro-environmental behaviors. This may indicate that the people who participated in the Giraffe Encounter came to the zoo more for recreation and entertainment than to learn about wildlife. Despite this, more people learned something new about nature or conservation at the Giraffe Encounter than they did at the Savanna Exhibit. On average, guests also felt that the Giraffe Encounter motivated them to learn more about how to help animals in the wild than the Savanna Exhibit did. Overall, there is a strong correlation between having an interactive, hands-on experience with a zoo animal and caring more about wildlife conservation. However, more research still needs to be done in order to conclusively provide evidence for causation.
ContributorsBurgess, Christa Noell (Author) / Schoon, Michael (Thesis director) / Minteer, Ben (Committee member) / Allard, Ruth (Committee member) / School of Life Sciences (Contributor) / School of Sustainability (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
134587-Thumbnail Image.png
Description
Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona

Chytridiomycosis, an infectious disease caused by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd), has played a significant role in global amphibian declines. Researchers studying Bd aim to gain a better understanding of how this pathogen survives in unique microhabitats to promote persistence of amphibians in their natural habitat. The Arizona Game and Fish Department has worked for the last 12 years to recover populations of Chiricahua Leopard Frogs to ensure the species survives in the Huachuca Mountains in southeastern Arizona. During this time, the department tested for Bd throughout their release sites. As a result of large differences in prevalence noted in prior sampling for Bd in Miller and Ramsey canyons, I investigated abiotic factors that could explain these differences. I analyzed water samples from two canyons in the Huachuca Mountains and used nutrient analysis and filter extraction to test for differences in abiotic factors between these two sites that could affect Bd transmission. Results show that Ramsey Canyon was a positive site for Bd, while Miller Canyon remained negative. Results from water temperature estimates as well as a test for 30 elements revealed possible reasons for differences in Bd transmission between the two canyons.
ContributorsSmith, Paige Gabrielle (Author) / Collins, James P. (Thesis director) / Franklin, Janet (Committee member) / Sredl, Michael J. (Committee member) / School of Sustainability (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2017-05