Matching Items (1)
Filtering by

Clear all filters

168845-Thumbnail Image.png
Description
Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications require more precise deterministic requirements and Ultra Low Latency (ULL),

Ethernet based technologies are emerging as the ubiquitous de facto form of communication due to their interoperability, capacity, cost, and reliability. Traditional Ethernet is designed with the goal of delivering best effort services. However, several real time and control applications require more precise deterministic requirements and Ultra Low Latency (ULL), that Ethernet cannot be used for. Current Industrial Automation and Control Systems (IACS) applications use semi-proprietary technologies that provide deterministic communication behavior for sporadic and periodic traffic, but can lead to closed systems that do not interoperate effectively. The convergence between the informational and operational technologies in modern industrial control networks cannot be achieved using traditional Ethernet. Time Sensitive Networking (TSN) is a suite of IEEE standards designed by augmenting traditional Ethernet with real time deterministic properties ideal for Digital Signal Processing (DSP) applications. Similarly, Deterministic Networking (DetNet) is a Internet Engineering Task Force (IETF) standardization that enhances the network layer with the required deterministic properties needed for IACS applications. This dissertation provides an in-depth survey and literature review on both standards/research and 5G related material on ULL. Recognizing the limitations of several features of the standards, this dissertation provides an empirical evaluation of these approaches and presents novel enhancements to the shapers and schedulers involved in TSN. More specifically, this dissertation investigates Time Aware Shaper (TAS), Asynchronous Traffic Shaper (ATS), and Cyclic Queuing and Forwarding (CQF) schedulers. Moreover, the IEEE 802.1Qcc, centralized management and control, and the IEEE 802.1Qbv can be used to manage and control scheduled traffic streams with periodic properties along with best-effort traffic on the same network infrastructure. Both the centralized network/distributed user model (hybrid model) and the fully-distributed (decentralized) IEEE 802.1Qcc model are examined on a typical industrial control network with the goal of maximizing scheduled traffic streams. Finally, since industrial applications and cyber-physical systems require timely delivery, any channel or node faults can cause severe disruption to the operational continuity of the application. Therefore, the IEEE 802.1CB, Frame Replication and Elimination for Reliability (FRER), is examined and tested using machine learning models to predict faulty scenarios and issue remedies seamlessly.
ContributorsNasrallah, Ahmed (Author) / Reisslein, Martin (Thesis advisor) / Syrotiuk, Violet R. (Committee member) / LiKamWa, Robert (Committee member) / Thyagaturu, Akhilesh (Committee member) / Arizona State University (Publisher)
Created2022