Matching Items (3)
Filtering by

Clear all filters

154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015
155870-Thumbnail Image.png
Description
Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of

Commercial buildings in the United States account for 19% of the total energy consumption annually. Commercial Building Energy Consumption Survey (CBECS), which serves as the benchmark for all the commercial buildings provides critical input for EnergyStar models. Smart energy management technologies, sensors, innovative demand response programs, and updated versions of certification programs elevate the opportunity to mitigate energy-related problems (blackouts and overproduction) and guides energy managers to optimize the consumption characteristics. With increasing advancements in technologies relying on the ‘Big Data,' codes and certification programs such as the American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE), and the Leadership in Energy and Environmental Design (LEED) evaluates during the pre-construction phase. It is mostly carried out with the assumed quantitative and qualitative values calculated from energy models such as Energy Plus and E-quest. However, the energy consumption analysis through Knowledge Discovery in Databases (KDD) is not commonly used by energy managers to perform complete implementation, causing the need for better energy analytic framework.

The dissertation utilizes Interval Data (ID) and establishes three different frameworks to identify electricity losses, predict electricity consumption and detect anomalies using data mining, deep learning, and mathematical models. The process of energy analytics integrates with the computational science and contributes to several objectives which are to

1. Develop a framework to identify both technical and non-technical losses using clustering and semi-supervised learning techniques.

2. Develop an integrated framework to predict electricity consumption using wavelet based data transformation model and deep learning algorithms.

3. Develop a framework to detect anomalies using ensemble empirical mode decomposition and isolation forest algorithms.

With a thorough research background, the first phase details on performing data analytics on the demand-supply database to determine the potential energy loss reduction potentials. Data preprocessing and electricity prediction framework in the second phase integrates mathematical models and deep learning algorithms to accurately predict consumption. The third phase employs data decomposition model and data mining techniques to detect the anomalies of institutional buildings.
ContributorsNaganathan, Hariharan (Author) / Chong, Oswald W (Thesis advisor) / Ariaratnam, Samuel T (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2017
164645-Thumbnail Image.png
Description
Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over

Arizona has been rapidly expanding in both population and construction over the last 20 years, and with the hot summer climate, many homeowners experience a significant increase in their utility bills. The cost to reduce these energy bills with home renovations can become expensive. This has become increasingly apparent over the last few years with the impact that covid had on the global supply chain. Prices of materials and labor have never been higher, and with this, the price of energy continues to increase. Therefore, it is important to explore methods to make homes more energy-efficient without the price tag. In addition to benefitting the homeowner by decreasing the cost of their monthly utility bills, making homes more energy efficient will aid in the overall goal of reducing carbon emissions.
ContributorsFiller, Peyton (Author) / Phelan, Patrick (Thesis director) / Parrish, Kristen (Committee member) / Barrett, The Honors College (Contributor) / Mechanical and Aerospace Engineering Program (Contributor)
Created2022-05