Matching Items (3)
Filtering by

Clear all filters

Description

This project aims to propose a novel approach for visualizing 4D geometry through the utilization of augmented reality (AR). While previous work has explored virtual reality (VR) as a means to bring 4D objects into a 3D environment, as well as 2D projections to display 4D geometry on screens, this

This project aims to propose a novel approach for visualizing 4D geometry through the utilization of augmented reality (AR). While previous work has explored virtual reality (VR) as a means to bring 4D objects into a 3D environment, as well as 2D projections to display 4D geometry on screens, this project seeks to extend the possibilities by leveraging the immersive nature of AR technology. By overlaying virtual 4D objects onto the real world, users can experience a more tangible representation and gain a deeper understanding of the complex structures present in higher dimensions.

ContributorsHum, Aaron (Author) / Nishimura, Joel (Thesis director) / Wang, Haiyan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
ContributorsHum, Aaron (Author) / Nishimura, Joel (Thesis director) / Wang, Haiyan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05
Description
This project aims to propose a novel approach for visualizing 4D geometry through the utilization of augmented reality (AR). While previous work has explored virtual reality (VR) as a means to bring 4D objects into a 3D environment, as well as 2D projections to display 4D geometry on screens, this

This project aims to propose a novel approach for visualizing 4D geometry through the utilization of augmented reality (AR). While previous work has explored virtual reality (VR) as a means to bring 4D objects into a 3D environment, as well as 2D projections to display 4D geometry on screens, this project seeks to extend the possibilities by leveraging the immersive nature of AR technology. By overlaying virtual 4D objects onto the real world, users can experience a more tangible representation and gain a deeper understanding of the complex structures present in higher dimensions.
ContributorsHum, Aaron (Author) / Nishimura, Joel (Thesis director) / Wang, Haiyan (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Natural Sciences (Contributor)
Created2023-05