Matching Items (58)
155698-Thumbnail Image.png
Description
A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for

A comprehensive and systematic investigation on the diffusion and phase behaviors of nanoparticles and macromolecules in two component liquid-liquid systems via Molecule Dynamic (MD) simulations is presented in this dissertation.

The interface of biphasic liquid systems has attracted great attention because it offers a simple, flexible, and highly reproducible template for the assembly of a variety of nanoscale objects. However, certain important fundamental issues at the interface have not been fully explored, especially when the size of the object is comparable with the liquid molecules. In the first MD simulation system, the diffusion and self-assembly of nanoparticles with different size, shape and surface composition were studied in an oil/water system. It has been found that a highly symmetrical nanoparticle with uniform surface (e.g. buckyball) can lead to a better-defined solvation shell which makes the “effective radius” of the nanoparticle larger than its own radius, and thus, lead to slower transport (diffusion) of the nanoparticles across the oil-water interface. Poly(N-isopropylacrylamide) (PNIPAM) is a thermoresponsive polymer with a Lower Critical Solution Temperature (LCST) of 32°C in pure water. It is one of the most widely studied stimulus-responsive polymers which can be fabricated into various forms of smart materials. However, current understanding about the diffusive and phase behaviors of PNIPAM in ionic liquids/water system is very limited. Therefore, two biphasic water-ionic liquids (ILs) systems were created to investigate the interfacial behavior of PNIPAM in such unique liquid-liquid interface. It was found the phase preference of PNIPAM below/above its LCST is dependent on the nature of ionic liquids. This potentially allows us to manipulate the interfacial behavior of macromolecules by tuning the properties of ionic liquids and minimizing the need for expensive polymer functionalization. In addition, to seek a more comprehensive understanding of the effects of ionic liquids on the phase behavior of PNIPAM, PNIPAM was studied in two miscible ionic liquids/water systems. The thermodynamic origin causes the reduction of LCST of PNIPAM in imidazolium based ionic liquids/water system was found. Energy analysis, hydrogen boding calculation and detailed structural quantification were presented in this study to support the conclusions.
ContributorsGao, Wei (Author) / Dai, Lenore (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Green, Matthew (Committee member) / Emady, Heather (Committee member) / Arizona State University (Publisher)
Created2017
155770-Thumbnail Image.png
Description
Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate

Nanomaterials exhibit unique properties that are substantially different from their bulk counterparts. These unique properties have gained recognition and application for various fields and products including sensors, displays, photovoltaics, and energy storage devices. Aerosol Deposition (AD) is a relatively new method for depositing nanomaterials. AD utilizes a nozzle to accelerate the nanomaterial into a deposition chamber under near-vacuum conditions towards a substrate with which the nanomaterial collides and adheres. Traditional methods for designing nozzles at atmospheric conditions are not well suited for nozzle design for AD methods.

Computational Fluid Dynamics (CFD) software, ANSYS Fluent, is utilized to simulate two-phase flows consisting of a carrier gas (Helium) and silicon nanoparticles. The Cunningham Correction Factor is used to account for non-continuous effects at the relatively low pressures utilized in AD.

The nozzle, referred to herein as a boundary layer compensation (BLC) nozzle, comprises an area-ratio which is larger than traditionally designed nozzles to compensate for the thick boundary layer which forms within the viscosity-affected carrier gas flow. As a result, nanoparticles impact the substrate at velocities up to 300 times faster than the baseline nozzle.
ContributorsHoffman, Trent (Author) / Holman, Zachary C (Thesis advisor) / Herrmann, Marcus (Committee member) / Kozicki, Michael (Committee member) / Arizona State University (Publisher)
Created2017
151453-Thumbnail Image.png
Description
Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple

Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple and quick methods of radiation detection is increasing. In this work, two systems were explored for their ability to simply detect ionizing radiation. Gold nanoparticles were formed via radiolysis of water in the presence of Elastin-like polypeptides (ELPs) and also in the presence of cationic polymers. Gold nanoparticle formation is an indicator of the presence of radiation. The system with ELP was split into two subsystems: those samples including isopropyl alcohol (IPA) and acetone, and those without IPA and acetone. The samples were exposed to certain radiation doses and gold nanoparticles were formed. Gold nanoparticle formation was deemed to have occurred when the sample changed color from light yellow to a red or purple color. Nanoparticle formation was also checked by absorbance measurements. In the cationic polymer system, gold nanoparticles were also formed after exposing the experimental system to certain radiation doses. Unique to the polymer system was the ability of some of the cationic polymers to form gold nanoparticles without the samples being irradiated. Future work to be done on this project is further characterization of the gold nanoparticles formed by both systems.
ContributorsWalker, Candace (Author) / Rege, Kaushal (Thesis advisor) / Chang, John (Committee member) / Kodibagkar, Vikram (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2012
149498-Thumbnail Image.png
Description
This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of

This study investigates the effect of the virgin granular activated carbon (GAC) on the properties of synthesized iron (hydr)oxide nanoparticles impregnated GAC (Fe-GAC) media and its ability to remove arsenate and organic trichloroethylene (TCE) from water. Fe-GAC media were synthesized from bituminous and lignite-based virgin GAC via three variations of a permanganate/Fe(II) synthesis method. Data obtained from an array of characterization techniques indicated that differences in pore size distribution and surface chemistry of the virgin GAC favor different reaction paths for the iron (hydr)oxide nanoparticles formation. Batch equilibrium isotherm testing (120 µg-As/L; 6 mg-TCE/L, 10 mM NaHCO3 at pH = 7.2 ± 0.1 and pH = 8.2 ± 0.1) showed arsenic removal capability was increased as a result of iron (nanoparticles) impregnation, while TCE removal properties were decreased in Fe-GAC media. This tradeoff was displayed by both lignite and bituminous Fe-GAC but was most pronounced in lignite-based Fe-GAC having the highest Fe content (13.4% Fe) which showed the most favorable Freundlich adsorption and intensity parameters for arsenic of Ka = 72.6 (µg-As/g-FeGAC)(L/µg-As)1
, 1
= 0.6; and least favorable adsorption for TCE of Ka = 0.8 (mg-TCE/g-FeGAC)(L/mg-TCE)1
, 1
= 4.47. It was concluded that iron content was the main factor contributing to enhanced arsenic removal and that this was affected by base GAC properties such as pore size distribution and surface functional groups. However high Fe content can result in pore blockage; reduction in available adsorption sites for organic co-contaminants; and have a significant effect on the Fe-GACs overall adsorption capacity.
ContributorsCooper, Anne Marie (Author) / Hristovski, Kiril D (Thesis advisor) / Olson, Larry W (Committee member) / Edwards, David A. (Committee member) / Arizona State University (Publisher)
Created2010
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135508-Thumbnail Image.png
Description
Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by

Neurological disorders are difficult to treat with current drug delivery methods due to their inefficiency and the lack of knowledge of the mechanisms behind drug delivery across the blood brain barrier (BBB). Nanoparticles (NPs) are a promising drug delivery method due to their biocompatibility and ability to be modified by cell penetrating peptides, such as transactivating transciptor (TAT) peptide, which has been shown to increase efficiency of delivery. There are multiple proposed mechanisms of TAT-mediated delivery that also have size restrictions on the molecules that can undergo each BBB crossing mechanism. The effect of nanoparticle size on TAT-mediated delivery in vivo is an important aspect to research in order to better understand the delivery mechanisms and to create more efficient NPs. NPs called FluoSpheres are used because they come in defined diameters unlike polymeric NPs that have a broad distribution of diameters. Both modified and unmodified 100nm and 200nm NPs were able to bypass the BBB and were seen in the brain, spinal cord, liver, and spleen using confocal microscopy and a biodistribution study. Statistically significant differences in delivery rate of the different sized NPs or between TAT-modified and unmodified NPs were not found. Therefore in future work a larger range of diameter size will be evaluated. Also the unmodified NPs will be conjugated with scrambled peptide to ensure that both unmodified and TAT-modified NPs are prepared in identical fashion to better understand the role of size on TAT targeting. Although all the NPs were able to bypass the BBB, future work will hopefully provide a better representation of how NP size effects the rate of TAT-mediated delivery to the CNS.
ContributorsCeton, Ricki Ronea (Author) / Stabenfeldt, Sarah (Thesis director) / Sirianni, Rachael (Committee member) / Harrington Bioengineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
135541-Thumbnail Image.png
Description
There is growing interest in intranasal delivery of therapeutics because of direct nose-to-brain pathways which are able to bypass biological barriers, such as the blood-brain barrier (BBB), that have historically limited our ability to effectively deliver drugs to the central nervous system (CNS). Since these pathways were first discovered, there

There is growing interest in intranasal delivery of therapeutics because of direct nose-to-brain pathways which are able to bypass biological barriers, such as the blood-brain barrier (BBB), that have historically limited our ability to effectively deliver drugs to the central nervous system (CNS). Since these pathways were first discovered, there has been significant preclinical success in delivering a wide range of therapeutics to the CNS with additional growing efforts to further improve delivery through nanoparticle drug delivery systems. Here we sought to improve intranasal delivery of DiR, a lipophilic small molecule cyanine dye, to the CNS by surface modifying a poly (lactic-co-glycolic acid) (PLGA) nanoparticle with a short peptide derived from the rabies virus glycoprotein (RVG). The specific aims of this thesis were to evaluate administration route-dependent delivery of RVG nanoparticles to the CNS, and to identify anatomical transport pathways by which nanoparticles facilitate transport of small lipophilic molecules. Route-dependent delivery kinetics and distribution were studied by administering DiR loaded nanoparticles to healthy Balb/C mice. Specific tissues were homogenized and the fluorescent intensity of DiR was measured and compared to control tissue spiked with known amounts of dye. While bioavailability of DiR after intranasal administration was near 0% with minimal exposure to peripheral organs, quick and efficient delivery to the CNS was still observed. CNS delivery after intranasal administration was rapid with peak concentrations at 30 minutes post-administration followed by broad clearance by 2 hours. Regional differences of delivery of DiR to the CNS demonstrated engagement of direct nose-to-brain transport pathways with high delivery being observed to the olfactory bulb, brain stem, and trigeminal nerve. RVG modification however presented only modest targeting benefits. In conclusion, the biodistribution of DiR after intranasal administration of DiR loaded nanoparticles showed high potential for the direct nose-to-brain delivery while limiting peripheral exposure of lipophilic small molecule drugs.
ContributorsChung, Eugene Paul (Author) / Kodibagkar, Vikram (Thesis director) / Sirianni, Rachael (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
Description

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have been developed that can treat multiple pollutants in a single step. A parent weak base anion exchange resin is embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and Ti-WBAX, respectively). These provide targeted treatment for both arsenic and hexavalent chromium, common groundwater pollutants of recent regulatory significance. The project goal is to evaluate the environmentally preferable choice between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic and hexavalent chromium in drinking water. The secondary goal is to identify where in the product life cycle is the most opportunity to reduce the environmental impact of the use of either product.

Created2014-06-13
Description

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or

Polymeric nanoparticles (NP) consisting of Poly Lactic-co-lactic acid - methyl polyethylene glycol (PLLA-mPEG) or Poly Lactic-co-Glycolic Acid (PLGA) are an emerging field of study for therapeutic and diagnostic applications. NPs have a variety of tunable physical characteristics like size, morphology, and surface topography. They can be loaded with therapeutic and/or diagnostic agents, either on the surface or within the core. NP size is an important characteristic as it directly impacts clearance and where the particles can travel and bind in the body. To that end, the typical target size for NPs is 30-200 nm for the majority of applications. Fabricating NPs using the typical techniques such as drop emulsion, microfluidics, or traditional nanoprecipitation can be expensive and may not yield the appropriate particle size. Therefore, a need has emerged for low-cost fabrication methods that allow customization of NP physical characteristics with high reproducibility. In this study we manufactured a low-cost (<$210), open-source syringe pump that can be used in nanoprecipitation. A design of experiments was utilized to find the relationship between the independent variables: polymer concentration (mg/mL), agitation rate of aqueous solution (rpm), and injection rate of the polymer solution (mL/min) and the dependent variables: size (nm), zeta potential, and polydispersity index (PDI). The quarter factorial design consisted of 4 experiments, each of which was manufactured in batches of three. Each sample of each batch was measured three times via dynamic light scattering. The particles were made with PLLA-mPEG dissolved in a 50% dichloromethane and 50% acetone solution. The polymer solution was dispensed into the aqueous solution containing 0.3% polyvinyl alcohol (PVA). Data suggests that none of the factors had a statistically significant effect on NP size. However, all interactions and relationships showed that there was a negative correlation between the above defined input parameters and the NP size. The NP sizes ranged from 276.144 ± 14.710 nm at the largest to 185.611 ± 15.634 nm at the smallest. In conclusion, the low-cost syringe pump nanoprecipitation method can achieve small sizes like the ones reported with drop emulsion or microfluidics. While there are trends suggesting predictable tuning of physical characteristics, significant control over the customization has not yet been achieved.

ContributorsDalal, Dhrasti (Author) / Stabenfeldt, Sarah (Thesis director) / Wang, Kuei-Chun (Committee member) / Flores-Prieto, David (Committee member) / Barrett, The Honors College (Contributor) / Harrington Bioengineering Program (Contributor)
Created2023-05
Description

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer cells rely heavily on glutamine for proliferation due to its contribution of nitrogen for nucleotides and amino acids. Glutamine enters the tricarboxylic acid (TCA) cycle as α-ketoglutarate via glutaminolysis, in which glutamine is converted into glutamate by the enzyme glutaminase (GLS). Cancer cell proliferation may be limited by using glutaminase inhibitor CB-839. However, immune cells also rely on these metabolic pathways. Thus, a method for restarting the metabolic pathways in the presence of inhibitors is attractive. Succinate, a key metabolite in the TCA cycle, has been shown to stimulate the immune system despite the presence of metabolic inhibitors, such as CB-839. A delivery method of succinate is through microparticles (MPs) or nanoparticles (NPs) which may be coated in polyethylene glycol (PEG) for improved hydrophilicity. Polyethylene glycol succinate (PEGS) MPs were generated and tested in vivo and were shown to reduce tumor growth and prolong mouse survival. With the success in stimulating the immune system with MPs, NPs were investigated for an improved immune response due to their smaller size. These PES NPs were generated in this study. For clinical settings, it is necessary to scale-up the production of particles. Two methods of scale-up were proposed: (1) a combination of multiple small batches into a mixed batch, and (2) a singular, big batch. Size and release properties were compared to a small batch of PES NPs, and it was concluded that the big batch more closely resembled the small batch compared to the mixed batch. Thus, it was concluded that batch-to-batch variability plays a larger role than volume changes when scaling-up. In clinical settings, it is recommended to produce the particles in a big batch rather than a mixed batch.

ContributorsSundem, Alison (Author) / Acharya, Abhinav (Thesis director) / Inamdar, Sahil (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05