Matching Items (48)
Filtering by

Clear all filters

150404-Thumbnail Image.png
Description
As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium

As the use of engineered nanomaterials (ENMs) in consumer products becomes more common, the amount of ENMs entering wastewater treatment plants (WWTPs) increases. Investigating the fate of ENMs in WWTPs is critical for risk assessment and pollution control. The objectives of this dissertation were to (1) quantify and characterize titanium (Ti) in full-scale wastewater treatment plants, (2) quantify sorption of different ENMs to wastewater biomass in laboratory-scale batch reactors, (3) evaluate the use of a standard, soluble-pollutant sorption test method for quantifying ENM interaction with wastewater biomass, and (4) develop a mechanistic model of a biological wastewater treatment reactor to serve as the basis for modeling nanomaterial fate in WWTPs. Using titanium (Ti) as a model material for the fate of ENMs in WWTPs, Ti concentrations were measured in 10 municipal WWTPs. Ti concentrations in pant influent ranged from 181 to 3000 µg/L, and more than 96% of Ti was removed, with effluent Ti concentrations being less than 25 µg/L. Ti removed from wastewater accumulated in solids at concentrations ranging from 1 to 6 µg Ti/mg solids. Using transmission electron microscopy, spherical titanium oxide nanoparticles with diameters ranging from 4 to 30 nm were found in WWTP effluents, evidence that some nanoscale particles will pass through WWTPs and enter aquatic systems. Batch experiments were conducted to quantify sorption of different ENM types to activated sludge. Percentages of sorption to 400 mg TSS/L biomass ranged from about 10 to 90%, depending on the ENM material and functionalization. Natural organic matter, surfactants, and proteins had a stabilizing effect on most of the ENMs tested. The United States Environmental Protection Agency's standard sorption testing method (OPPTS 835.1110) used for soluble compounds was found to be inapplicable to ENMs, as freeze-dried activated sludge transforms ENMs into stable particles in suspension. In conjunction with experiments, we created a mechanistic model of the microbiological processes in membrane bioreactors to predict MBR, extended and modified this model to predict the fate of soluble micropollutants, and then discussed how the micropollutant fate model could be used to predict the fate of nanomaterials in wastewater treatment plants.
ContributorsKiser, Mehlika Ayla (Author) / Westerhoff, Paul K (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Hristovski, Kiril D (Committee member) / Arizona State University (Publisher)
Created2011
149911-Thumbnail Image.png
Description
In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of

In recent years, the field of nanomedicine has progressed at an astonishing rate, particularly with respect to applications in cancer treatment and molecular imaging. Although organic systems have been the frontrunners, inorganic systems have also begun to show promise, especially those based upon silica and magnetic nanoparticles (NPs). Many of these systems are being designed for simultaneous therapeutic and diagnostic capabilities, thus coining the term, theranostics. A unique class of inorganic systems that shows great promise as theranostics is that of layered double hydroxides (LDH). By synthesis of a core/shell structures, e.g. a gold nanoparticle (NP) core and LDH shell, the multifunctional theranostic may be developed without a drastic increase in the structural complexity. To demonstrate initial proof-of-concept of a potential (inorganic) theranostic platform, a Au-core/LDH-shell nanovector has been synthesized and characterized. The LDH shell was heterogeneously nucleated and grown on the surface of silica coated gold NPs via a coprecipitation method. Polyethylene glycol (PEG) was introduced in the initial synthesis steps to improve crystallinity and colloidal stability. Additionally, during synthesis, fluorescein isothiocyanate (FITC) was intercalated into the interlayer spacing of the LDH. In contrast to the PEG stabilization, a post synthesis citric acid treatment was used as a method to control the size and short-term stability. The heterogeneous core-shell system was characterized with scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), dynamic light scattering (DLS), and powder x-ray diffraction (PXRD). A preliminary in vitro study carried out with the assistance of Dr. Kaushal Rege's group at Arizona State University was to demonstrate the endocytosis capability of homogeneously-grown LDH NPs. The DLS measurements of the core-shell NPs indicated an average particle size of 212nm. The PXRD analysis showed that PEG greatly improved the crystallinity of the system while simultaneously preventing aggregation of the NPs. The preliminary in vitro fluorescence microscopy revealed a moderate uptake of homogeneous LDH NPs into the cells.
ContributorsRearick, Colton (Author) / Dey, Sandwip K (Thesis advisor) / Krause, Stephen (Committee member) / Ramakrishna, B (Committee member) / Arizona State University (Publisher)
Created2011
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150123-Thumbnail Image.png
Description
Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting,

Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting, which is necessary to balance the absorption and utilization of light energy and in that way reduce the effect caused by photooxidative damage. In photosynthesis, carotenoids are responsible not only for collection of light, but also play a major role in protecting the photosynthetic system. To investigate the role of carotenoids in the quenching of the excited state of cyclic tetrapyrroles, two sets of dyads were studied. Both sets of dyads contain zinc phthalocyanine (Pc) covalently attached to carotenoids of varying conjugation lengths. In the first set of dyads, carotenoids were attached to the phthalocyanine via amide linkage. This set of dyads serves as a good model for understanding the molecular "gear-shift" mechanism, where the addition of one double bond can turn the carotenoid from a nonquencher to a very strong quencher of the excited state of a tetrapyrrole. In the second set of dyads, carotenoids were attached to phthalocyanine via a phenyl amino group. Two independent studies were performed on these dyads: femtosecond transient absorption and steady state fluorescence induced by two-photon excitation. In the transient absorption study it was observed that there is an instantaneous population of the carotenoid S1 state after Pc excitation, while two-photon excitation of the optically forbidden carotenoid S1 state shows 1Pc population. Both observations provide a strong indication of the existence of a shared excitonic state between carotenoid and Pc. Similar results were observed in LHC II complexes in plants, supporting the role of such interactions in photosynthetic down regulation. In the second chapter we describe the synthesis of porphyrin dyes functionalized with carboxylate and phosphonate anchoring groups to be used in the construction of photoelectrochemical cells containing a porphyrin-IrO2·nH2O complex immobilized on a TiO2 electrode. The research presented here is a step in the development of high potential porphyrin-metal oxide complexes to be used in the photooxidation of water. The last chapter focuses on developing synthetic strategies for the construction of an artificial antenna system consisting of porphyrin-silver nanoparticle conjugates, linked by DNA of varied length to study the distance dependence of the interaction between nanoparticles and the porphyrin chromophore. Preliminary studies indicate that at the distance of about 7-10 nm between porphyrin and silver nanoparticle is where the porphyrin absorption leading to fluorescence shows maximum enhancement. These new hybrid constructs will be helpful for designing efficient light harvesting systems.
ContributorsPillai, Smitha (Author) / Moore, Ana (Thesis advisor) / Moore, Thomas (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2011
Description
Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with

Obtaining local electrochemical (EC) information is extremely important for understanding basic surface reactions, and for many applications. Scanning electrochemical microscopy (SECM) can obtain local EC information by scanning a microelectrode across the surface. Although powerful, SECM is slow, the scanning microelectrode may perturb reaction and the measured signal decreases with the size of microelectrode. This thesis demonstrates a new imaging technique based on a principle that is completely different from the conventional EC detection technologies. The technique, referred to as plasmonic-based electrochemical imaging (PECI), images local EC current (both faradaic and non-faradaic) without using a scanning microelectrode. Because PECI response is an optical signal originated from surface plasmon resonance (SPR), PECI is fast and non-invasive and its signal is proportional to incident light intensity, thus does not decrease with the area of interest. A complete theory is developed in this thesis work to describe the relationship between EC current and PECI signal. EC current imaging at various fixed potentials and local cyclic voltammetry methods are developed and demonstrated with real samples. Fast imaging rate (up to 100,000 frames per second) with 0.2×3µm spatial resolution and 0.3 pA detection limit have been achieved. Several PECI applications have been developed to demonstrate the unique strengths of the new imaging technology. For example, trace particles in fingerprint is detected by PECI, a capability that cannot be achieved with the conventional EC technologies. Another example is PECI imaging of EC reaction and interfacial impedance of graphene of different thicknesses. In addition, local square wave voltammetry capability is demonstrated and applied to study local catalytic current of platinum nanoparticle microarray. This thesis also describes a related but different research project that develops a new method to measure surface charge densities of SPR sensor chips, and micro- and nano-particles. A third project of this thesis is to develop a method to expand the conventional SPR detection and imaging technology by including a waveguide mode. This innovation creates a sensitive detection of bulk index of refraction, which overcomes the limitation that the conventional SPR can probe only changes near the sensor surface within ~200 nm.
ContributorsShan, Xiaonan (Author) / Tao, Nongjian (Thesis advisor) / Chae, Junseok (Committee member) / Christen, Jennifer Blain (Committee member) / Hayes, Mark (Committee member) / Arizona State University (Publisher)
Created2011
150141-Thumbnail Image.png
Description
A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and

A method of determining nanoparticle temperature through fluorescence intensity levels is described. Intracellular processes are often tracked through the use of fluorescence tagging, and ideal temperatures for many of these processes are unknown. Through the use of fluorescence-based thermometry, cellular processes such as intracellular enzyme movement can be studied and their respective temperatures established simultaneously. Polystyrene and silica nanoparticles are synthesized with a variety of temperature-sensitive dyes such as BODIPY, rose Bengal, Rhodamine dyes 6G, 700, and 800, and Nile Blue A and Nile Red. Photographs are taken with a QImaging QM1 Questar EXi Retiga camera while particles are heated from 25 to 70 C and excited at 532 nm with a Coherent DPSS-532 laser. Photographs are converted to intensity images in MATLAB and analyzed for fluorescence intensity, and plots are generated in MATLAB to describe each dye's intensity vs temperature. Regression curves are created to describe change in fluorescence intensity over temperature. Dyes are compared as nanoparticle core material is varied. Large particles are also created to match the camera's optical resolution capabilities, and it is established that intensity values increase proportionally with nanoparticle size. Nile Red yielded the closest-fit model, with R2 values greater than 0.99 for a second-order polynomial fit. By contrast, Rhodamine 6G only yielded an R2 value of 0.88 for a third-order polynomial fit, making it the least reliable dye for temperature measurements using the polynomial model. Of particular interest in this work is Nile Blue A, whose fluorescence-temperature curve yielded a much different shape from the other dyes. It is recommended that future work describe a broader range of dyes and nanoparticle sizes, and use multiple excitation wavelengths to better quantify each dye's quantum efficiency. Further research into the effects of nanoparticle size on fluorescence intensity levels should be considered as the particles used here greatly exceed 2 ìm. In addition, Nile Blue A should be further investigated as to why its fluorescence-temperature curve did not take on a characteristic shape for a temperature-sensitive dye in these experiments.
ContributorsTomforde, Christine (Author) / Phelan, Patrick (Thesis advisor) / Dai, Lenore (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2011
152366-Thumbnail Image.png
Description
Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles

Water-soluble, adenosine triphosphate (ATP)-stabilized palladium nanoparticles have been synthesized by reduction of palladium salt in the presence of excess ATP. They have been characterized by electron microscopy, energy dispersive X-ray spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and X-ray diffraction in order to determine particle size, shape, composition and crystal structure. The particles were then subsequently attached to a glassy carbon electrode (GCE) in order to explore their electrochemical properties with regard to hydrogen insertion in 1 M sodium hydroxide. The particles were found to be in the size range 2.5 to 4 nm with good size dispersion. The ATP capping ligand allowed the particles to be air-stable and re-dissolved without agglomeration. It was found that the NPs could be firmly attached to the working electrode via cycling the voltage repeatedly in a NP/phosphate solution. Further electrochemical experiments were conducted to investigate the adsorption and absorption of hydrogen in the NPs in 1 M sodium hydroxide. Results for cyclic voltammetry experiments were consistent with those for nanostructured and thin-film palladium in basic solution. Absorbed hydrogen content was analyzed as a function of potential. The maximum hydrogen:Pd ratio was found to be ~0.7, close the theoretical maximum value for β phase palladium hydride.
ContributorsLamb, Timothy (Author) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeffery (Committee member) / Ros, Alexandra (Committee member) / Arizona State University (Publisher)
Created2013
151401-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable

Deoxyribonucleic acid (DNA), a biopolymer well known for its role in preserving genetic information in biology, is now drawing great deal of interest from material scientists. Ease of synthesis, predictable molecular recognition via Watson-Crick base pairing, vast numbers of available chemical modifications, and intrinsic nanoscale size makes DNA a suitable material for the construction of a plethora of nanostructures that can be used as scaffold to organize functional molecules with nanometer precision. This dissertation focuses on DNA-directed organization of metallic nanoparticles into well-defined, discrete structures and using them to study photonic interaction between fluorophore and metal particle. Presented here are a series of studies toward this goal. First, a novel and robust strategy of DNA functionalized silver nanoparticles (AgNPs) was developed and DNA functionalized AgNPs were employed for the organization of discrete well-defined dimeric and trimeric structures using a DNA triangular origami scaffold. Assembly of 1:1 silver nanoparticle and gold nanoparticle heterodimer has also been demonstrated using the same approach. Next, the triangular origami structures were used to co-assemble gold nanoparticles (AuNPs) and fluorophores to study the distance dependent and nanogap dependencies of the photonic interactions between them. These interactions were found to be consistent with the full electrodynamic simulations. Further, a gold nanorod (AuNR), an anisotropic nanoparticle was assembled into well-defined dimeric structures with predefined inter-rod angles. These dimeric structures exhibited unique optical properties compared to single AuNR that was consistent with the theoretical calculations. Fabrication of otherwise difficult to achieve 1:1 AuNP- AuNR hetero dimer, where the AuNP can be selectively placed at the end-on or side-on positions of anisotropic AuNR has also been shown. Finally, a click chemistry based approach was developed to organize sugar modified DNA on a particular arm of a DNA origami triangle and used them for site-selective immobilization of small AgNPs.
ContributorsPal, Suchetan (Author) / Liu, Yan (Thesis advisor) / Yan, Hao (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2012
151979-Thumbnail Image.png
Description
Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the

Liquid-liquid interfaces serve as ideal 2-D templates on which solid particles can self-assemble into various structures. These self-assembly processes are important in fabrication of micron-sized devices and emulsion formulation. At oil/water interfaces, these structures can range from close-packed aggregates to ordered lattices. By incorporating an ionic liquid (IL) at the interface, new self-assembly phenomena emerge. ILs are ionic compounds that are liquid at room temperature (essentially molten salts at ambient conditions) that have remarkable properties such as negligible volatility and high chemical stability and can be optimized for nearly any application. The nature of IL-fluid interfaces has not yet been studied in depth. Consequently, the corresponding self-assembly phenomena have not yet been explored. We demonstrate how the unique molecular nature of ILs allows for new self-assembly phenomena to take place at their interfaces. These phenomena include droplet bridging (the self-assembly of both particles and emulsion droplets), spontaneous particle transport through the liquid-liquid interface, and various gelation behaviors. In droplet bridging, self-assembled monolayers of particles effectively "glue" emulsion droplets to one another, allowing the droplets to self-assembly into large networks. With particle transport, it is experimentally demonstrated the ILs overcome the strong adhesive nature of the liquid-liquid interface and extract solid particles from the bulk phase without the aid of external forces. These phenomena are quantified and corresponding mechanisms are proposed. The experimental investigations are supported by molecular dynamics (MD) simulations, which allow for a molecular view of the self-assembly process. In particular, we show that particle self-assembly depends primarily on the surface chemistry of the particles and the non-IL fluid at the interface. Free energy calculations show that the attractive forces between nanoparticles and the liquid-liquid interface are unusually long-ranged, due to capillary waves. Furthermore, IL cations can exhibit molecular ordering at the IL-oil interface, resulting in a slight residual charge at this interface. We also explore the transient IL-IL interface, revealing molecular interactions responsible for the unusually slow mixing dynamics between two ILs. This dissertation, therefore, contributes to both experimental and theoretical understanding of particle self-assembly at IL based interfaces.
ContributorsFrost, Denzil (Author) / Dai, Lenore L (Thesis advisor) / Torres, César I (Committee member) / Nielsen, David R (Committee member) / Squires, Kyle D (Committee member) / Rege, Kaushal (Committee member) / Arizona State University (Publisher)
Created2013
151453-Thumbnail Image.png
Description
Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple

Ionizing radiation, such as gamma rays and X-rays, are becoming more widely used. These high-energy forms of electromagnetic radiation are present in nuclear energy, astrophysics, and the medical field. As more and more people have the opportunity to be exposed to ionizing radiation, the necessity for coming up with simple and quick methods of radiation detection is increasing. In this work, two systems were explored for their ability to simply detect ionizing radiation. Gold nanoparticles were formed via radiolysis of water in the presence of Elastin-like polypeptides (ELPs) and also in the presence of cationic polymers. Gold nanoparticle formation is an indicator of the presence of radiation. The system with ELP was split into two subsystems: those samples including isopropyl alcohol (IPA) and acetone, and those without IPA and acetone. The samples were exposed to certain radiation doses and gold nanoparticles were formed. Gold nanoparticle formation was deemed to have occurred when the sample changed color from light yellow to a red or purple color. Nanoparticle formation was also checked by absorbance measurements. In the cationic polymer system, gold nanoparticles were also formed after exposing the experimental system to certain radiation doses. Unique to the polymer system was the ability of some of the cationic polymers to form gold nanoparticles without the samples being irradiated. Future work to be done on this project is further characterization of the gold nanoparticles formed by both systems.
ContributorsWalker, Candace (Author) / Rege, Kaushal (Thesis advisor) / Chang, John (Committee member) / Kodibagkar, Vikram (Committee member) / Potta, Thrimoorthy (Committee member) / Arizona State University (Publisher)
Created2012