Matching Items (9)
Filtering by

Clear all filters

136133-Thumbnail Image.png
Description
Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While

Currently in synthetic biology only the Las, Lux, and Rhl quorum sensing pathways have been adapted for broad engineering use. Quorum sensing allows a means of cell to cell communication in which a designated sender cell produces quorum sensing molecules that modify gene expression of a designated receiver cell. While useful, these three quorum sensing pathways exhibit a nontrivial level of crosstalk, hindering robust engineering and leading to unexpected effects in a given design. To address the lack of orthogonality among these three quorum sensing pathways, previous scientists have attempted to perform directed evolution on components of the quorum sensing pathway. While a powerful tool, directed evolution is limited by the subspace that is defined by the protein. For this reason, we take an evolutionary biology approach to identify new orthogonal quorum sensing networks and test these networks for cross-talk with currently-used networks. By charting characteristics of acyl homoserine lactone (AHL) molecules used across quorum sensing pathways in nature, we have identified favorable candidate pathways likely to display orthogonality. These include Aub, Bja, Bra, Cer, Esa, Las, Lux, Rhl, Rpa, and Sin, which we have begun constructing and testing. Our synthetic circuits express GFP in response to a quorum sensing molecule, allowing quantitative measurement of orthogonality between pairs. By determining orthogonal quorum sensing pairs, we hope to identify and adapt novel quorum sensing pathways for robust use in higher-order genetic circuits.
ContributorsMuller, Ryan (Author) / Haynes, Karmella (Thesis director) / Wang, Xiao (Committee member) / Barrett, The Honors College (Contributor) / School of Mathematical and Statistical Sciences (Contributor) / Department of Chemistry and Biochemistry (Contributor) / School of Life Sciences (Contributor)
Created2015-05
133722-Thumbnail Image.png
Description
One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain

One of the primary bottlenecks to chemical production in biological organisms is the toxicity of the chemical. Overexpression of efflux pumps has been shown to increase tolerance to aromatic compounds such as styrene and styrene oxide. Tight control of pump expression is necessary to maximize titers and prevent excessive strain on the cells. This study aimed to identify aromatic-sensitive native promoters and heterologous biosensors for construction of closed-loop control of efflux pump expression in E. coli. Using a promoter library constructed by Zaslaver et al., activation was measured through GFP output. Promoters were evaluated for their sensitivity to the addition of one of four aromatic compounds, their "leaking" of signal, and their induction threshold. Out of 43 targeted promoters, 4 promoters (cmr, mdtG, yahN, yajR) for styrene oxide, 2 promoters (mdtG, yahN) for styrene, 0 promoters for 2-phenylethanol, and 1 promoter for phenol (pheP) were identified as ideal control elements in aromatic bioproduction. In addition, a series of three biosensors (NahR, XylS, DmpR) known to be inducible by other aromatics were screened against styrene oxide, 2-phenylethanol, and phenol. The targeted application of these biosensors is aromatic-induced activation of linked efflux pumps. All three biosensors responded strongly in the presence of styrene oxide and 2-phenylethanol, with minor activation in the presence of phenol. Bioproduction of aromatics continues to gain traction in the biotechnology industry, and the continued discovery of aromatic-inducible elements will be essential to effective pathway control.
ContributorsXu, Jimmy (Author) / Nielsen, David (Thesis director) / Wang, Xuan (Committee member) / School of Life Sciences (Contributor) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134704-Thumbnail Image.png
Description
p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult

p-Coumaric acid is used in the food, pharmaceutical, and cosmetic industries due to its versatile properties. While prevalent in nature, harvesting the compound from natural sources is inefficient, requiring large quantities of producing crops and numerous extraction and purification steps. Thus, the large-scale production of the compound is both difficult and costly. This research aims to produce p-coumarate directly from renewable and sustainable glucose using a co-culture of Yeast and E. Coli. Methods used in this study include: designing optimal media for mixed-species microbial growth, genetically engineering both strains to build the production pathway with maximum yield, and analyzing the presence of p-Coumarate and its pathway intermediates using High Performance Liquid Chromatography (HPLC). To date, the results of this project include successful integration of C4H activity into the yeast strain BY4741 ∆FDC1, yielding a strain that completely consumed trans-cinnamate (initial concentration of 50 mg/L) and produced ~56 mg/L p-coumarate, a resting cell assay of the co-culture that produced 0.23 mM p-coumarate from an initial L-Phenylalanine concentration of 1.14 mM, and toxicity tests that confirmed the toxicity of trans-cinnamate to yeast for concentrations above ~50 mg/L. The hope for this project is to create a feasible method for producing p-Coumarate sustainably.
ContributorsJohnson, Kaleigh Lynnae (Author) / Nielsen, David (Thesis director) / Thompson, Brian (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
134647-Thumbnail Image.png
Description
The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner.

The overall goal of this project is to use metallic nanoparticles to develop a thin, ductile amorphous film at room temperature. Currently bulk metallic glasses are mainly formed via quenching, which requires very high cooling rates to achieve an amorphous molecular structure. These formations often fail in a brittle manner. The advantages of using a bottom-up approach with amorphous nanoparticles at ambient conditions is that the ductility of the metal can be improved, and the process will be less energy intensive. The nanoparticles used are iron precursors with ATMP and DTPMP ligand stabilizers and dispersed in methanol. Three forms of experimentation were applied over the course of this project. The first was a simple, preliminary data collection approach where the particles were dispersed onto a glass slide and left to dry under various conditions. The second method was hypersonic particle deposition, which accelerated the particles to high speeds and bombarded onto a glass or silicon substrate. The third method used Langmuir-Blodgett concepts and equipment to make a film. Qualitative analyses were used to determine the efficacy of each approach, including SEM imaging. In the end, none of the approaches proved successful. The first approach showed inconsistencies in the film formation and aggregation of the particles. The results from the hypersonic particle deposition technique showed that not enough particles were deposited to make a consistent film, and many of the particles that were able to be deposited were aggregated. The Langmuir-Blodgett method showed potential, but aggregation of the particles and uneven film formation were challenges here as well. Although there are ways the three discussed experimental approaches could be optimized, the next best step is to try completely new approaches, such as convective assembly and 3D printing to form the ideal nanoparticle film.
ContributorsKline, Katelyn Ann (Author) / Lind, Mary Laura (Thesis director) / Cay, Pinar (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
133676-Thumbnail Image.png
Description
Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form,

Gold nanoparticles are valuable for their distinct properties and nanotechnology applications. Because their properties are controlled in part by nanoparticle size, manipulation of synthesis method is vital, since the chosen synthesis method has a significant effect on nanoparticle size. By aiding mediating synthesis with proteins, unique nanoparticle structures can form, which open new possibilities for potential applications. Furthermore, protein-mediated synthesis favors conditions that are more environmentally and biologically friendly than traditional synthesis methods. Thus far, gold particles have been synthesized through mediation with jack bean urease (JBU) and para mercaptobenzoic acid (p-MBA). Nanoparticles synthesized with JBU were 80-90nm diameter in size, while those mediated by p-MBA were revealed by TEM to have a size between 1-3 nm, which was consistent with the expectation based on the black-red color of solution. Future trials will feature replacement of p-MBA by amino acids of similar structure, followed by peptides containing similarly structured amino acids.
ContributorsHathorn, Gregory Michael (Author) / Nannenga, Brent (Thesis director) / Green, Matthew (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
134977-Thumbnail Image.png
Description
Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC,

Polymer-nanoparticle composites (PNCs) show improved chemical and physical properties compared to pure polymers. However, nanoparticles dispersed in a polymer matrix tend to aggregate due to strong interparticle interactions. Electrospun nanofibers impregnated with nanoparticles have shown improved dispersion of nanoparticles. Currently, there are few models for quantifying dispersion in a PNC, and none for electrospun PNC fibers. A simulation model was developed to quantify the effects of nanoparticle volume loading and fiber to particle diameter ratios on the dispersion in a nanofiber. The dispersion was characterized using the interparticle distance along the fiber. Distributions of the interparticle distance were fit to Weibull distributions and a two-parameter empirical equation for the mean and standard deviation was found. A dispersion factor was defined to quantify the dispersion along the polymer fiber. This model serves as a standard for comparison for future experimental studies through its comparability with microscopy techniques, and as way to quantify and predict dispersion in polymer-nanoparticle electrospinning systems with a single performance metric.
ContributorsBalzer, Christopher James (Author) / Mu, Bin (Thesis director) / Armstrong, Mitchell (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-12
135735-Thumbnail Image.png
Description
One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to

One of the grand challenges of engineering is to provide access to clean water because it is predicted that by 2025 more than two thirds of the world’s population will face severe water shortages. To combat this global issue, our lab focuses on creating a novel composite membrane to recover potable water from waste. For use as the water-selective component in this membrane design Linde Type A zeolites were synthesized for optimal size without the use of a template. Current template-free synthesis of zeolite LTA produces particles that are too large for our application therefore the particle size was reduced in this study to reduce fouling of the membrane while also investigating the nanoparticle synthesis mechanisms. The time and temperature of the reaction and the aging of the precursor gel were systematically modified and observed to determine the optimal conditions for producing the particles. Scanning electron microscopy, x-ray diffraction, and energy dispersive x-ray analysis were used for characterization. Sub-micron sized particles were synthesized at 2 weeks aging time at -8°C with an average size of 0.6 micrometers, a size suitable for our membrane. There is a limit to the posterity and uniformity of particles produced from modifying the reaction time and temperature. All results follow general crystallization theory. Longer aging produced smaller particles, consistent with nucleation theory. Spinodal decomposition is predicted to affect nucleation clustering during aging due to the temperature scheme. Efforts will be made to shorten the effective aging time and these particles will eventually be incorporated into our mixed matrix osmosis membrane.
ContributorsKing, Julia Ann (Author) / Lind, Mary Laura (Thesis director) / Durgun, Pinar Cay (Committee member) / Chemical Engineering Program (Contributor) / Materials Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
148463-Thumbnail Image.png
Description

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are

The increased shift towards environmentalism has brought notable attention to a universal excessive plastic consumption and subsequent plastic overload in landfills. Among these plastics, polyethylene terephthalate, more commonly known as PET, constitutes a large percentage of the waste that ends up in landfills. Material and chemical/thermal methods for recycling are both costly, and inefficient, which necessitates a more sustainable and cheaper alternative. The current study aims at fulfilling that role through genetic engineering of Bacillus subtilis with integration of genes from LCC, Ideonella sakaiensis, and Bacillus subtilis. The plasmid construction was done through restriction cloning. A recombinant plasmid for the expression of LCC was constructed, and transformed into Escherichia coli. Future experiments for this study should include redesigning of primers, with possible combination of signal peptides with genes during construct design, and more advanced assays for effective outcomes.

ContributorsKalscheur, Bethany Ann (Author) / Varman, Arul (Thesis director) / Andino, Jean (Committee member) / Chemical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer

With an estimated 19.3 million cases and nearly 10 million deaths from cancer in a year worldwide, immunotherapies, which stimulate the immune system so that it can attack and kill cancer cells, are of interest. Tumors are produced from the uncontrolled and rapid proliferation of cells in the body. Cancer cells rely heavily on glutamine for proliferation due to its contribution of nitrogen for nucleotides and amino acids. Glutamine enters the tricarboxylic acid (TCA) cycle as α-ketoglutarate via glutaminolysis, in which glutamine is converted into glutamate by the enzyme glutaminase (GLS). Cancer cell proliferation may be limited by using glutaminase inhibitor CB-839. However, immune cells also rely on these metabolic pathways. Thus, a method for restarting the metabolic pathways in the presence of inhibitors is attractive. Succinate, a key metabolite in the TCA cycle, has been shown to stimulate the immune system despite the presence of metabolic inhibitors, such as CB-839. A delivery method of succinate is through microparticles (MPs) or nanoparticles (NPs) which may be coated in polyethylene glycol (PEG) for improved hydrophilicity. Polyethylene glycol succinate (PEGS) MPs were generated and tested in vivo and were shown to reduce tumor growth and prolong mouse survival. With the success in stimulating the immune system with MPs, NPs were investigated for an improved immune response due to their smaller size. These PES NPs were generated in this study. For clinical settings, it is necessary to scale-up the production of particles. Two methods of scale-up were proposed: (1) a combination of multiple small batches into a mixed batch, and (2) a singular, big batch. Size and release properties were compared to a small batch of PES NPs, and it was concluded that the big batch more closely resembled the small batch compared to the mixed batch. Thus, it was concluded that batch-to-batch variability plays a larger role than volume changes when scaling-up. In clinical settings, it is recommended to produce the particles in a big batch rather than a mixed batch.

ContributorsSundem, Alison (Author) / Acharya, Abhinav (Thesis director) / Inamdar, Sahil (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Chemical Engineering Program (Contributor)
Created2023-05